Scale-separated (anisotropic) AdS flux vacua

Matteo Morittu

Universidad de Oviedo \& ICTEA

Jornadas ICTEA

Based on: 2304.14372; 2311.08991 [arXiv/hep-th]
in collaboration with F. Farakos and G. Tringas

Introduction

Introduction and motivation

Standard Model versus General Relativity

Introduction and Motivation

String Theory

$$
D=10
$$

We do not observe all of them!

Introduction and motivation

Scale Separation Problem

How can we make contact with our observable $d=4$ Universe?

Moving towards a specific construction

Anti-de-Sitter vacua

$$
L_{\text {int. }} \ll L_{\text {ext. }} ?
$$

Moving towards a specific construction

Inspired by some debated supersymmetric AdS_{4} scale-separated vacua, e.g.

- The KKLT model [Kachru et alii, 2003];
- The DGKT construction [De Wolfe et alii, 2005],
we search for simpler classical scale-separated AdS flux vacua [Farakos et
alii, 2021; Farakos, MM, Tringas, 2023] in $\mathbf{d}=\mathbf{3}$ dimensions.
AdS_{3} flux vacua from IIA orientifolds

Setup [Farakos et alii, 2021]

D = 10 massive type IIA Supergravity

compactified down to

$$
\mathbf{d}=3 \text { Supergravity }
$$

on a deformed 7 -dimensional torus \mathbb{T}^{7}

Result [Farakos, MM, Tringas, 2023]

Within the regime of validity of the supergravity description, we can:

- produce anisotropies among the internal dimensions;
- tune the relative magnitude of the radii of \mathbb{T}^{7} to obtain a scale-separated scenario, where e.g. [2304.14372]

$$
\begin{array}{ll}
\left\{r_{i}^{2}\right\}_{i=1,3,5,7}: & \frac{L_{i}^{2}}{L_{\text {AdS }}^{2}} \sim N^{-1} ; \\
\left\{r_{i}^{2}\right\}_{i=2,4,6}: & \frac{L_{i}^{2}}{L_{\text {AdS }}^{2}} \sim N^{-1-x} \text { with } x>-1 .
\end{array}
$$

Conclusions

Concluding Remarks

Outlook

We constructed new consistent supersymmetric AdS_{3} vacua with(out) scale-separation, also being able to create a (considerable) anisotropy within the internal space.

Some possible future directions

Extension to other types of internal spaces. Detailed investigation of 3-dimensional de Sitter uplifts [Work in progress, Farakos et alii]. [...].

Thank you for your interest and attention!

