Timing the Trigger:
Clock Signal Distribution in the GMS Level 1
Trigger System
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. How do we measure the timing?
e t0 marks the beginning of the

measurement, collision. Provided by
the accelerator.
Proton ' >

0) \ ] e t1 marks the arrival of the particle to

the detector using TDCs. Analog
sensor to timing information

1 at=t1-10 conversion (LYSO crystals, SiPMs,
LGAD sensors...)



https://indico.cern.ch/event/971970/contributions/4172196/attachments/2175301/3673627/IAS-HEP2021-LGADs_v1.pdf
https://indico.cern.ch/event/971970/contributions/4172196/attachments/2175301/3673627/IAS-HEP2021-LGADs_v1.pdf

e Bunch of particles are arranged by the
RF cavities that are tuned to operate
at 400.788 MHz.

e A bunch spacing of approximately
25ns is achieved in these cavities.

e These neatly spaced bunches then
collide at the interaction points of the
LHC.

e The readout of the detectors is and
should be synchronized to this clock.
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e This the t0 of the collision - hence ~H00788MHz o
the start of the timing measurement. - -

to : Bunch
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Now we have the t0.

e How do we distribute it to the
detectors?

- There may be multiple connection points, opto-electrical
conversions, KMs to reach the detector and some hundred
meters to be distributed over tens of thousands of
communication links within a detector!
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Rather than distributing a square wave clock, the alignment data is transmitted encoded in the

data (more efficient).
The receiver extracts the alignment information by checking the header bits and reconstructs the



https://en.wikipedia.org/wiki/Manchester_code
https://es.wikipedia.org/wiki/8b/10b
https://en.wikipedia.org/wiki/Non-return-to-zero

In the original CMS design trigger control, trigger
distribution, and synchronisation were handled by
three separate systems:

e TTC: Trigger, Timing and Control.

o  Optically transmit the LHC clock and fast commands to detector
front-ends.

e TTS: Trigger Throttling System.

o  Gather status information from the readout electronics.

e TCS: Trigger Control System.

o Control the delivery of L1 Trigger Accept (L1A) signals based
upon the status of the readout electronics and DAQ system.

The Trigger Systems
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e The LHC Clock and Orbit signals are distributed
from the Prevessin Control Room to the LHC
experiments through single-mode optical fibers
via the TTC Machine Interface (TTCmi) crate.
High-power, all-glass passive optical networks.
The trigger system is interfaced with the TTC
through the TTC-VMEbus TTCvi (TTCci in CMS).

e At each front-end destination, a special timing
receiver ASIC (TTCrx) delivers all the signals
required by the electronics controllers.
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Trigger and Timing Control and Distribution System 2015

e TTC,TTS, and TCS harmonized into a single system. e MicroTCA based
e Normalization of functionalities and architecture. 12-slot te di t.'b
e Massive cleanup. ¢ -slot crate distributes

clock and commands
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AMC13 — CMS uTCA readout board
________________ FDL - Final Decision Logic

FINOR - Final OR

FMM - Fast Merging Module

GT — Global Trigger

TCS — Trigger Control System

TIM - Timing Module
CPM — Central Partition Manager TTC — Timing, Trigger & Control
LPM — Local Partition Manager TTCrx — TTC Receiver ASIC
Pl — Partition Interface TTS — Trigger Throttling System




~1000x100 Gbs data links
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All detectors will be either
completely new or significantly
upgraded — no backward
compatibility required.

Addition of timing detectors
introduces tight clock
distribution

requirements.




Timing in LHC - TC

Lives between the synchronous world of L1 trigger and detectors
and the asynchronous DAQ world.

* Distributes clock signals, synchronization commands, L1 trigger,
and slow control from central systems to back-ends.

* Receives event fragments from back-ends, concentrates and
buffers these, and transmits them to the data-to-surface network.
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TCDS2 = Master + DTH

- Clock

- Fast Control
TCDS2 Master - Clock & Control
)
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e The DTH will drive single-crate test/commissioning systems.

e The TCDS2 master will drive multi-crate systems, and synchronise to the LHC.



Serenity

e Based on powerful FPGAs produced by
Xilinx.

e Large Input/Output bandwidth using
multiple Optical Fibers.

e Parallel data processing by Trigger
Algorithms.

Phase-2 Processors utilize Ultrascale Plus
FPGA family:

e  Optical module with latest QSFP and
QSFP-DD (double-density) optics.
e  Samtec Firefly.

Both designed to follow the 25
Gigabit Ethernet standard line rate

o 25.78125 Gb/s



e CMS systems must be synchronous with the LHC Clock - 40 MHz.

o  Subsystems must “be aware” of which Buch Crossing data they process
o Algorithm clock domain must be multiple of the LHC clock.
o To transmit and receive data two Algorithm blocks must utilize the same Optical Protocol.
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LHC Domain

Utilize FIFOs to handle Clock Domain differences.

Link Domain

Filler @ 2.7 Gb/s

Tx write CD lower than read Rx.

Filler bandwidth is created when fifo is empty.
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At 25.78125 Gbps

Link Domain: 390.6 MHz

LHC Domain: 360 MHz

LHC Bandwidth: 23.04 Gbps
Filler Bandwidth: 2.74125 Gbps

o O O O

CMS Standard Protocol (CSP)

Serial Data Rate: 24.17 Gbps (from
LHC, 9 data words/Bx, 67-bit word).
Bandwidth is divided into two

categories:
o “Data” — LHC synchronous physics
payload
o “Filler” — excess bandwidth needed to

meet the physical line rate

Multiple reliability mechanisms.
o Critical-Field Error Correction
o CRC16 protection
o Index Correction
o Link ID Words




Purpose-Driven Design: Dedicated FPGA frameworks
specifically tailored for High-Speed Serial Communications and
LHC clock data recovery.

Modular Architecture: Encapsulates all necessary modules
including encoding, decoding, error checking, and protocol
management.

LHC Clock Recovery: Specialized modules for handling LHC
clock synchronization, critical for data alignment across multiple
Sensors.

Abstraction Layer: Simplifies user interaction by abstracting
complex protocols and hardware details, making the frameworks
accessible to non-specialists.

Enhanced Usability: Allows easy implementation of custom
algorithm modules and adaptations to evolving research needs.
Data Management: Facilitates data injection for testing and
efficient output reading for real-time analysis and algorithm
refinement.

Flexibility and Scalability: Supports rapid prototyping and
scalability in response to changing experimental requirements.
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The

Thank you for your time!

Questions?
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Back up




RF_RX  RF_Tx

e
e

TTC backbone e Signals received per beam:
S e e Fevaka. “Orbit: 11kHz 2808 b

TTC off-detector
o detem’l. % e Bunch clock: 40.079 MHz
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Protons in LHC

Protons never feel a force
in the backward direction.

88.924 s

In order to maintain an acceptable filling factor in the
LHC with the 72-bunch PS trains, the SPS batches
which will be injected into the LHC will comprise groups
of 3, 3 and then 4 PS trains.

As a result of this change the number of bunch
crossings per orbit will be reduced from 2835 to 2808.
Note that this applies only to ATLAS and CMS.
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e Signal stability requirements
over +1000 end points.

e Long-term environmental
variations such temperature
can affect clock phase.

e Fast variations can be
cleaned at the last PLL of
the backend FPGA chain.
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A Timing Compensated High-Speed Optical Link
for the HL-LHC experiments



e The main task of the L1 Trigger Control System
(TCS) is to control the delivery of L1 Trigger
Accepts(L1A) generated by the Global Trigger,

Global Trigger DAQ Event depending on the status of the readout electronics

Managers s e
= and the data acquisition.

LHC GPS

Partition
Control

Local Triggers Local
Control

Ml (s

Partition
Control
e This status is derived from local state machines
Local

Sl i that emulate the front-end buffers occupation, as
t well as from direct information transmitted back by
r.ﬁjg STTEI the CMS subsystems through the Trigger Throttling
System (TTS).
e TCS is also responsible for generating

HORERT Absdrs S synchronization and fast reset commands, as well
as to control the delivery of test and calibration
triggers.

e TCS uses the TTC network to distribute information
to the subsystems.
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Two data channels are time-division multiplexed (TDM) and
encoded biphase mark at 160.32 MBaud (four times the LHC
bunch-crossing rate). This is sufficiently close to the standard
Sonet OC-3 (CCITT SDH STM-1) rate of 155.52 MBaud.
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e The loop begins with an incoming sine wave that is passed into a phase detector. The phase detector is used to compare the

Phase
Correction

phase of the incoming sine wave against a reconstructed sine wave produced internally. The output of this phase detector is an
error signal. This error signal is then optionally filtered, and fed into two portions of the circuit: one to track frequency and the
other to track phase. These two portions combine within a Numerically Controlled Oscillator (NCO) to create a new phase for

the reconstructed sine wave. That phase is then used as an input to a sine wave generator to create a reconstructed sine wave,

which is then used as the second input to the phase detector and the loop repeats.



https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Phase_detector
https://en.wikipedia.org/wiki/Phase_detector
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Phase_detector
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Instantaneous_phase
https://zipcpu.com/dsp/2017/12/09/nco.html
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Sine_wave
https://github.com/ZipCPU/cordic
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Phase_detector

