

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Recent top quark associated measurements with the CMS experiment of the LHC

07/05/2024

Javier del Riego

Universidad de Oviedo

Jornadas del ICTEA

Introduction	3
History	7
Experimental Setup	11
<i>tt</i> @5.02 <i>TeV</i>	13
tW@13.6 TeV	19
Summary	23

- **Top quark** serves as key in understanding the SM and beyond.
- Main reasons:

• Most massive elementary particle in SM:

- $m_t = 172.5 \pm 0.33 \ GeV$ (LHC Run 1 combination)
 - Its high mass makes it sensitive to BSM physics postulated at high energies (EFTs as mechanism...)

H

- **Top quark** serves as key in understanding the SM and beyond.
- Main reasons:

 $m_t = 172.5 \pm 0.33 \ GeV$

Higgs boson

• Fermions couple to Higgs through Yukawa couplings:

$$v_f = \frac{\sqrt{2}m_f}{v}$$

- Since top has the highest mass, it suffers the strongest coupling to Higgs boson
- Crucial to understand and probe EWSB

• **Top quark** serves as key in understanding the SM and beyond.

• Main reasons:

 $m_t = 172.5 \pm 0.33 \ GeV$

00

Interactions

- Top quark experiences strong, weak and electromagnetic interactions.
 - Present in many processes that allow us to measure with high precision the SM and its parameters.

Electromagnetic

AN FORCE

H

Re o

٠

hang out down there

• Handful of observables that can be measured.

• Claiming of discovery in 1995 by CDF and D0 at Tevatron ($p\bar{p}$ collider).

10s of tt events

07/05/2024

• Run 2 of Tevatron: from discovery to first precision measurements (2002-2005).

100

150

200

mreco (GeV/c2)

07/05/2024

Javier del Riego - U.Oviedo

250

300

350

• LHC: top factory. Scrutiny of the top quark far beyond anything previously achieved.

1000s of tt events

100000s of tt events

07/05/2024

Javier del Riego - U.Oviedo

- At hadron colliders the dominant production process is in pairs, dominated by strong interaction.
- Also electroweak mediated production of single top quarks (~1/2 of $t\bar{t}$ events)

```
Tevatron pp @ 1.96 TeV (LHC pp @ 14 TeV)
 Strong Interaction
                                Electroweak Interaction
                                                                                                Number of tt events (*)
                                                                     Tevatron
                                                                                                          ~70k
  00000
               ~85%(10%)
                                                                     LHC 7 TeV
                                                                                                         ~0.9M
a
                                                                     LHC 8 TeV
                                                                                                          ~5M
   σ~7.2(984) pb
                                    σ~3.6(344) pb
                                                                     LHC 14 TeV
                                                                                                      ~95M/year
                                                                      (@, 10^{34} \text{ cm}^{-2}\text{s}^{-1})
              ~15%(<mark>90%</mark>)
                                                                     (*) Produced/experiment
                      m<sub>t</sub>=172.5 GeV
```

Experimental Setup

- CMS experiment at LHC (CERN).
- Described in previous talks.

07/05/2024

Oviedo's contribution in top

• Oviedo's experimental HEP group has collaborated and leaded many physics analyses in the top quark sector

- This talk will cover the two most recent results:
 - *tt* cross section measurement at 5.02 TeV [1]
 - tW cross section measurement at 13.6 TeV [2]

tt@5.02*TeV*

- $t\bar{t}$ cross section measured widely at LHC at different CM energies.
- Plenty of measurements at 7, 8 and 13 TeV (Runs 1-2), not so many at 5 TeV.
- Special interest is low Pileup (~2 interactions per bunch crossing).

07/05/2024

Javier del Riego - U.Oviedo

tt@5.02*TeV*

Goal: measure the $t\bar{t}$ cross section at 5.02 TeV in the semileptonic final state with the 2017 data 302 pb⁻¹.

- Select events with:
- Exactly 1 lepton (electron or muon).
- At least 3 jets (clusterings of quarks and gluons)
- Missing transverse energy > 30 GeV.
- Events are further categorized into 8 categories depending on the number of jets and b-tagged jets, and the lepton flavour (electron or muon).
- This selection enhances signal ($t\bar{t}$) contribution

tt@5.02*TeV*

Goal: measure the $t\bar{t}$ cross section at 5.02 TeV in the semileptonic final state with the 2017 data 302 pb⁻¹.

- Select events with:
- Exactly 1 lepton (electron or muon).
- At least 3 jets (clusterings of quarks and gluons)
- Missing transverse energy > 30 GeV.
- Events are further categorized into 8 categories depending on the number of jets and b-tagged jets, and the lepton flavour (electron or muon).
- This selection enhances signal ($t\bar{t}$) contribution –
- Analysis strategy: perform a maximum likelihood fit to median(ΔR(j, j')) + MVA Score (3j1b category). Random forest tt vs W+jets.
- Uncertainties: experimental (proper of the detector), theoretical ($t\bar{t}$ modeling) and normalization of the background samples.

07/05/2024

Javier del Riego - U.Oviedo

- Result in agreement with previous measurements and theoretical prediction.
- Lowered previous CMS reference measurement's uncertainty by more than 3%.
- No longer statistically dominated.

tW@13.6 TeV

- Subleading single top production mechanism at hadron colliders.
- Previous inclusive and differential cross section measurements at 7, 8 and 13 TeV by ATLAS and CMS (Oviedo involved).
- First single top LHC measurement at 13.6 TeV (data collected in 2022).
- **Experimental challenge**: irreducible $t\bar{t}$ background largely dominates signal contribution.

Theoretical challenge: At NLO in QCD, $t\bar{t}$ and tW interfere

*tW@*13.6*TeV*

Event Selection

- At least 2 leptons (leading $e^{\pm}\mu^{\mp}$).
- Pairs satisfying: $m(\ell_1 \ell_2) > 20 \text{ GeV}$
- Categorisation: 1j1b, 2j1b, 2j2b

tW@13.6*TeV*

Event Selection

- At least 2 leptons (leading $e^{\pm}\mu^{\mp}$).
- Pairs satisfying: $m(\ell_1 \ell_2) > 20 \text{ GeV}$
- Categorisation: 1j1b, 2j1b, 2j2b

<u>Analysis strategy</u>

- Inclusive: maximum likelihood fit to 3 distributions:
 - **1j1b:** Random Forest MVA discriminating tW vs $t\overline{t}$ vs DY
 - **2j1b:** Random Forest MVA discriminating tW vs $t\overline{t}$
 - **2j2b:** subleading jet *pT*.
- **Differential:** study of the observables:
 - p_T of leading lepton
 - p_T of jet
 - $\Delta \phi(e,\mu)$
 - $p_z(e,\mu,jet)$
 - m(e, μ, jet)
 - $m_T(e,\mu,jet,p_T^{miss})$

07/05/2024

*tW@*13.6*TeV*

<u>Results</u>

- Inclusive: $\sigma_{tW} = 84.1 \pm 2.1 \ (stat)^{+9.8}_{-10.2} (syst) \pm 3.3 (lumi) \ pb$
- Good agreement with theoretical prediction

- Differential:
- Compatible results between the SM expectations and the measured cross sections are also observed.

Summary

- Top quark is a key piece in understanding the SM and Beyond.
- Oviedo's experimental HEP group has historically worked on that sector within the CMS experiment at LHC
- This year's public results:
 - Inclusive $t\bar{t}$ cross section at 5.02 TeV. Most precise CMS measurement at that CM energy. Interesting scenario for the low pile-up. $\sigma_{t\bar{t}} = 61.2^{+1.6}_{-1.5}(stat)^{+2.6}_{-2.3}(syst) \pm 1.2$ (lumi) pb
 - Inclusive and differential *tW* cross section at 13.6 TeV. First single top measurement of LHC at that CM energy.

 $\sigma_{tW} = 84.1 \pm 2.1 \ (stat)^{+9.8}_{-10.2} (syst) \pm 3.3 (lumi) \ pb$

1 Good agreenctio

Thanks for the attention!

Any question?

javier.del.riego.badas@cern.ch