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What is a defect?

QFTs are defined on a d−dimensional spacetime Md (bulk), but we can restrict
degrees of freedom to a subspace of dimension q < p Nq ⊂ Md (defect). This is a
defect QFT.

Defects are ubiquitous!: impurities in CM, Wilson loops in QCD, even symmetry
operators= topological defects!
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Renormalization Group and C-Theorem

Physics depends on scale µ! We can know the theory at low energy (IR), by
“averaging out” the highest energy modes from the original theory (UV). This is
Renormalization Group (RG) flow, given by β-functions.

β = µ
∂g

∂µ
(1)

The number of d.o.f. is lower in the IR than in the UV (RG flow is irreversible):
C -theorem.

C = C (g), CUV − CIR > 0 (2)
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Defect CFTs

The flow may reach a fixed point (β = 0), the theory does not depend on scale
(CFT). We may perturb a CFT by “turning on” a deformation that lives on the
defect.

S = SCFT + g

∫
Nq

Odef (3)

This deformation only results in a new flow, if it is relevant, i.e. ∆(g) > 0 or
marginal ∆(g) = 0 (quantum corrections). This new flow may end end on a new
fixed point g = g∗.
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Scalar CFTs

We want to study scalar theories with N scalars Φi in d = 4, 6 dimensional bulks
Md , given by

Sbulk =

∫
Md

1
2
(∂µΦi )

2 + V (Φi ) (4)

with V (Φi ) a homogeneous polynomial of degree n = 4, 3 respectively with
marginal coupling gα. We let the bulk flow to a CFT.

We perturb this CFT by adding a deformation located in a q = 1, 2 dimensional
flat defect Nq.

S = Sbulk + Sdefect , Sdefect = −
∫
Nq

hiΦi (5)

The defect acts as a “source” for ϕ:

⟨ϕi ⟩ ∼
hi
r∆

(6)
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Double Scaling Limit

We can try to compute βi = µ∂hi/∂µ, but this is difficult because of bulk loops!

We take the semiclassical double scaling limit

hi → ∞, gα → 0, gαhn−2
i fixed (7)

This suppresses bulk loops!

We compute βi via dimensional regulation (d ′ = d − ϵ, ϵ → 0)
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Remarks on the β-functions

The fixed points of β show factorization of the dependence of ϵ with gα
(determined at 1-loop). This is dimensional disentanglement.

Under a change of scheme,

β = 2c
∂H(ϕi )

∂ϕi
(8)

for a scalar function H(ϕi ) that monotonically decreases along RG flow.
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Instabilities in Defect CFTs

Our defect CFT may become unstable if at some value of the couplings, operators
become relevant!

We look for condensates O = ϕk
i . Due to the semiclassical limit < O >=< ϕi >

k

(as in AdS/CFT).
Therefore ∆(O) = k∆(ϕi ), and we read this off the one point functions. If
∆(O) < q, the defect CFT becomes unstable.
We check for instabilities in scalar theories with O(N) symmetry and fermionic
Yukawa models.
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Defect Free Energy

Can we define a C-theorem for our defect CFT? A candidate is the defect free
energy on Nq = Sq

F [Sq] = − log

∫
Dϕ e−Sbulk+defect [Sd ]∫
Dϕ e−Sbulk [Sd ]

(9)

Expanding this in term of the radius R :

Fq =

{
c(1) (ΛR)− s1 q = 1 ,
c(2)(ΛR)2 + c(0) − s2 log(ΛR) q = 2 .

(10)

where only sd is universal and is monotonically decreasing along RG flows
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Computing F for Defect CFT

We perform a conformal transformation on the bulk to Md = Hq+1 × Sq+1 (note
no conformal coupling to curvature!). The defect lives at ∂Hq+1 = Sq (rigid
holography).

Due to the semiclassical limit we can directly compute
∫
Dϕ e−S = e−Son−shell via

saddle-point approximation.
The action is divergent since the volume of Hq+1 is infinite. We regulate this by
putting the boundary at finite r = R .
We solve the e.o.m of ϕ by imposing the boundary condition

ϕ|∂ =
( q

4π

)q
hi (11)

which sources ϕ from the defect.
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Hamilton-Jacobi Equations

Alternatively, we can use the Hamilton-Jacobi equations identifying “time” with
the UV regulator R

H(ϕi , pi ,R) = −∂Son−shell

∂R
(12)

We find after imposing the b.c. on the boundary:

Son−shell = π1−qv(R)H(hi ) (13)

This H is the same function we obtained from field-theory!
Moreover, using pi = ∂Son−shell/∂ϕ we recover at the R → ∞ limit:

β =
2
q

∂H
∂ϕ

(14)

15 / 17



Introduction to Defect CFTs and Renormalization Group
RG Flows in Defect CFTs

Rigid Holography and C-Theorems

Hamilton-Jacobi Equations

Alternatively, we can use the Hamilton-Jacobi equations identifying “time” with
the UV regulator R

H(ϕi , pi ,R) = −∂Son−shell

∂R
(12)

We find after imposing the b.c. on the boundary:

Son−shell = π1−qv(R)H(hi ) (13)

This H is the same function we obtained from field-theory!

Moreover, using pi = ∂Son−shell/∂ϕ we recover at the R → ∞ limit:

β =
2
q

∂H
∂ϕ

(14)

15 / 17



Introduction to Defect CFTs and Renormalization Group
RG Flows in Defect CFTs

Rigid Holography and C-Theorems

Hamilton-Jacobi Equations

Alternatively, we can use the Hamilton-Jacobi equations identifying “time” with
the UV regulator R

H(ϕi , pi ,R) = −∂Son−shell

∂R
(12)

We find after imposing the b.c. on the boundary:

Son−shell = π1−qv(R)H(hi ) (13)

This H is the same function we obtained from field-theory!
Moreover, using pi = ∂Son−shell/∂ϕ we recover at the R → ∞ limit:

β =
2
q

∂H
∂ϕ

(14)

15 / 17



Introduction to Defect CFTs and Renormalization Group
RG Flows in Defect CFTs

Rigid Holography and C-Theorems

C-Theorem

We recover the entropy functions sq by reading off the on-shell action:

s1 = H, s2 =
H
2π

(15)

They are monotonically decreasing since if t = − logµ

dsq
dt

= − βiβ
i

2πq−1 ≤ 0 (16)

We have a (semiclassical) C-theorem!
Going beyond semiclassics, we check that up to 1-loop in d = 4 − ϵ line defect
scalar QFT, β is a gradient. We find a condition for the gradient property for
fermionic line defects in d = 4 − ϵ.
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Thank you for your attention!
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