(Observational) Cosmology @ICTEA

Universidad de Oviedo

Joaquín Gonzalez-Nuevo on behalf of the observational Cosmology group

Credits: Laura Bonavera

Cosmology (in physics) is the study of the universe's origin, evolution, composition, structure, and eventual fate

In Cosmology/Astrophysics we study the past to understand the future (as geology, antropology, ...)

Sole successful cosmological model! High predictive power!

Energy content of the Universe Today

4-5% Astrophysics Well Known!!

VS

95-96% Dark Universe Observationally needed but Not well understood!

Approaches to work in moderm Cosmology

Main Cosmological Observables

Component Separation

Retrive the cleanest CMB image possible from a noisy background

CENN (CMB Extraction Neural Network)

Total Intensity (CENN-T) Casas et al. 2022b

Polarization (CENN-Pol) Casas et al. 2025 (submitted)

Point Source Detection

Extragalactic sources (Compact Sources) contaminates the small scales of CMB images.

Astrophysical interest by their own (Radiogalaxies, Blazars, IR Late-types, ...)

PoSelDoN (Point Source Image Detection Network)

Total Intensity

PoSelDoN (single frequency) Bonavera et al. 2021

MHW2 30 MHW2 4o PoSelDoN • nsity [m]y] 103 Der 1.0 Recover 0.8 PoSelDoN 0.6 MHW2 3σ Compl MHW2 4σ 0.4 0.2 102 Input Flux Dens 0.0 200 150 5 E 100 spu 50 2 102 103 104 Flux density [mJy]

Multi-PoSeIDoN (multi-frequency)

Casas et al. 2022a

Polarization: POSPEN (POint Source Polarization Estimation Network) [Casas et al. 2023]

Foregrounds: Synchrotron emission

Casas et al. 2025 (to be submitted)

Magnification Bias

Magnification Bias

- A (weak) gravitational lensing effect.
- In our case, it produces an excess of background sources around massive galaxies (lenses)
- It's a cosmological probe!
 - Depends on total matter, cosmological distances and cosmological parameter.

Cosmological parameters (single redshift bin)

aussian β : all fields

0.2

0.3

 σ_8

 Ω_m

0.6 0.7 0.8 0.9

h

2.9

ß

1.0

α

11.0

log M_{min}

12

14

 $\log M_1$

from the joint analysis of both observables. The data are shown in black.

0.0

Astrophysics (HMF, neutrinos) **Observational constrainst** of the HMF Test of its universality Cueli et al. 2021 Cueli et al. 2022 10^{-8} 3 parameters - Tomographic 2 parameters - Tomographic 10^{-11} n(M, 0.4) [h⁴Mpc⁻³M₀⁻¹] 10^{-14} 10^{-17} 4 10⁻²⁰ 10⁻²³ 10^{-26} 10^{-29} Despali et al. (2016) 10⁻³² 10¹² 10^{14} 10^{10} 10^{11} 10¹³ 10¹⁵ 10¹⁶ $M [M_{\odot}/h]$

ACDM with massive neutrinos (vCDM) Cueli et al. 2024

Conclusions

Young, small but very active group!

Cosmology is in crisis → Research opportunities! More research ideas than manpower!