
 Study of the feasibility of accelerating MC generation with
FPGAs

Jornadas ICTEA 2025

Santiago Folgueras1, Carlos Vico Villalba1, Pelayo Leguina López1

Luca Fiorini2, Héctor Gutiérrez Arance2, Alberto Valero Biot2, Francisco Hervás Álvarez2,
Arantza De Oyanguren Campos2, Jiahui Zhuo2, Volodymyr Svintozelskyi2, Valerii Kholoimov2,

1 Universidad de Oviedo, Asturias, Spain
2 Instituto de Física Corpuscular (CSIC-UV), Valencia, Spain

Carlos Vico Villalba (University of Oviedo – ICTEA) 2

The Standard Model of Particle Physics

 MC simulation of high energy physics using hardware accelerators

● The SM is a renormalizable Quantum Field Theory.

○ It predicts the nature of high energy
interactions between the particles of the
model.

● The goal of the experiments at the LHC is to

○ Measure the properties of these particles.

○ Explore further extensions in search of new
physics.

Carlos Vico Villalba (University of Oviedo – ICTEA) 3

Montecarlo modeling

 MC simulation of high energy physics using hardware accelerators

● The SM predictive power is tested against
the recorded data.

○ Montecarlo (MC) generation
approaches allow to resembles the
nature of the data (counting
experiments) by generating events.

● Based on a factorized approach that
divides the whole calculation into steps.

○ Hard interactions: Leading Order
(LO) + Next-to-LO (NLO) 𝛼s
expansion terms in a perturbative
series at scale μ.

○ Soft interactions: approximation of
collinear/soft QCD/weak radiation
effects.

Carlos Vico Villalba (University of Oviedo – ICTEA) 4

Montecarlo modeling

 MC simulation of high energy physics using hardware accelerators

● Left: momentum in the transverse plane for the radiation
emitted when producing a pair of quarks and a W boson.

● Problem in 2021: discontinuity at 150 GeV.

○ → Caused a 4 standard deviations disagreement
between experiment and theory!

● MC modeling (how well the simulations describe the data) is essential for the LHC physics programme.

○ For instance: ttW (measured in Oviedo) production has shown slight tensions with the theory.

○ (Also in Oviedo) the modeling is thoroughly reviewed.

Carlos Vico Villalba (University of Oviedo – ICTEA) 5

Montecarlo modeling

 MC simulation of high energy physics using hardware accelerators

● Left: momentum in the transverse plane for the radiation
emitted when producing a pair of quarks and a W boson.

● Solution in 2022 (from MC builders):

○ Proper modeling of weak radiation off of W boson.

○ A slight tension remains at ~2 standard deviations.

○ Much more controlled.

● MC modeling (how well the simulations describe the data) is essential for the LHC physics programme.

○ For instance: ttW (measured in Oviedo) production has shown slight tensions with the theory.

○ (Also in Oviedo) the modeling is thoroughly reviewed.

Carlos Vico Villalba (University of Oviedo – ICTEA) 6

Current issues

 MC simulation of high energy physics using hardware accelerators

● MC modeling is a challenge from multiple perspectives:

○ In the case of ttW → > 2 years of work just to get this MC simulation working in CMS!!

● Timetable for this work:

○ Few months of compiling all the diagrams that make up the hard interaction.

■ Each time we do this: ~1 day of running (Intel(R) Core(TM) i7 CPU 970 @ 3.20GHz)

○ Validation has to be made in a large enough sample of events (statistically meaningful predictions):

■ We can generate about 1M events in ~1 day

■ A reasonably large sample is made out of 10M events

■ This, in any case, runs relatively fast and efficient.

● The bottleneck is in the compilation time

Carlos Vico Villalba (University of Oviedo – ICTEA) 7

Current issues

 MC simulation of high energy physics using hardware accelerators

● This issue is actually more relevant for much more common processes → example: top-antitop pair
production (measured in Oviedo).

● The problem grows as we add more radiation diagrams

gg→ttgggg→ttg gg→ttggg
This process is effectively impossible
to simulate in experiments like CMS
or ATLAS due to a computing
limitation!!!

~5 weeks of compilation

We normally approximate
beyond the third radiation and
that “does the trick”

Carlos Vico Villalba (University of Oviedo – ICTEA) 8

Current issues

 MC simulation of high energy physics using hardware accelerators

● “Does the trick” → assume the radiation is
soft/collinear, take the modeling at degraded
accuracy from the parton shower.

○ Works very well for smaller datasets → not
a problem for the Run 2 + Run 3 results.

○ Let’s not forget we are aiming at
measuring properties of the Higgs in phase
spaces with up to 4 jets (HH→4b channel)
in the final state → this is extremely
sensitive to these effects.

○ One needs to solve the bottleneck by
better improving / pipelining the
computation through improved running
architectures such as GPU

Carlos Vico Villalba (University of Oviedo – ICTEA) 9

Where the community is going

 MC simulation of high energy physics using hardware accelerators

● The developers of one of the most commonly used MC software package (Madgraph5_aMC@NLO) are
already working towards a solution to this problem.

○ As of now Madgraph5_aMC@NLO works in Fortran. Runs on CPU.

○ They ported the code to consider CUDA/C++ which is significantly faster.

By A. Valassi (CHEP 2024)

https://indico.cern.ch/event/1338689/contributions/6015964/attachments/2952926/5191730/20241023-MG5aMConGPU-CHEP-AV-v011.pdf

In Oviedo we went for an
alternative way :)

10

Carlos Vico Villalba (University of Oviedo – ICTEA) 11

● One liner: to perform viability studies on whether MC generation workflows can be accelerated using Field
Programmable Gate Arrays (FPGAs).

The project

 MC simulation of high energy physics using hardware accelerators

● The project is a proof of concept
○ Can we use FPGAs for MC generation?
○ At this stage, we have identified a task to

be optimized in FPGA, and started
making comparisons against CPU
performance.

○ The ultimate goal is to test against GPU
performance to see if FPGA can actually
be competitive on this task.

Carlos Vico Villalba (University of Oviedo – ICTEA) 12

The project

 MC simulation of high energy physics using hardware accelerators

● Technical description: A Field Programmable Gate Array
(FPGA) is an integrated circuit with a programmable hardware
fabric that allows it to be reconfigured to behave like another
circuit.

● Non-technical description: an electronic chip built inside a
board that can be reprogrammed at any time (unlike
GPUs/CPUs or any kind of ASIC).

● The advantages of an FPGA are:
○ Fine-grained customization
○ Spatial compute
○ Hardware flexibility
○ Diverse IOs

● The disadvantages are:
○ Little access to non-expert users.
○ “Limited” resources for complex operations

(e.g divisions, exponentiations).

Carlos Vico Villalba (University of Oviedo – ICTEA) 13

The project

 MC simulation of high energy physics using hardware accelerators

● In CPU programming:
○ Write code in a given language (C, C++,

fortran).
○ Compile the code.
○ Code is translated into instructions that

can be understood by the CPU.
○ We execute the compiled code.

A bunch of gibberish

Carlos Vico Villalba (University of Oviedo – ICTEA) 14

The project

 MC simulation of high energy physics using hardware accelerators

● In CPU programming:
○ Write code in a given language (C, C++,

fortran).
○ Compile the code.
○ Code is translated into instructions that

can be understood by the CPU.
○ We execute the compiled code.

● In FPGA programming:
○ We compile code in a given language

(VHDL, HLS).
○ The code is translated into Register

Transfer Level language (RTL).
● The RTL tells the FPGA what circuit do we

have to build to solve the task.

VHDL

RTL

Carlos Vico Villalba (University of Oviedo – ICTEA) 15

The project

 MC simulation of high energy physics using hardware accelerators

● In CPU programming:
○ Write code in a given language (C, C++,

fortran).
○ Compile the code.
○ Code is translated into instructions that

can be understood by the CPU.
○ We execute the compiled code.

● In FPGA programming:
○ We compile code in a given language

(VHDL, HLS).
○ The code is translated into Register

Transfer Level language (RTL).
● The RTL tells the FPGA what circuit do we

have to build to solve the task.
○ Which resources from the FPGA are

needed to solve the task at hand.

VHDL

Carlos Vico Villalba (University of Oviedo – ICTEA) 16

The project

 MC simulation of high energy physics using hardware accelerators

● We focus all of our examples in one of the main processes used in experimental High Energy Physics:
ttbar multijets (considering up to 3 jets).

P1_gg_ttxggg

● 119 integration channels
after gensym.

● Focused on one (G1).
● We measured the time

that is spent in integrating
this channel.

tit

Ct

● tit is the time per iteration of the color matrix operation.
● Ct is the cumulated time spent in doing this operation
● Ct = tit x Ncalls, where Ncalls is the number of calls to functions

that integrate the diagram)

These 10 lines of code actually consume
~60% of the total computation time!!!

Carlos Vico Villalba (University of Oviedo – ICTEA) 17

The project

 MC simulation of high energy physics using hardware accelerators

● Translation to FPGA language

binary tree
adder

ncolor_mult

nampso_acc
JAMP

nampso_acc

ncolor_mult
CF

Output

Using an optimization for these kind of computations
from Sign Process Syst 95, 543–550 (2023)

https://link.springer.com/article/10.1007/s11265-023-01867-7

Carlos Vico Villalba (University of Oviedo – ICTEA) 18

The project

 MC simulation of high energy physics using hardware accelerators

● We have computed a first preliminary comparison of the performance between CPU/ FPGA DSPs / FPGA AI
Cores.

Time spent in one call to the color matrix calculation for different architectures, expressed in
microseconds (μs). The numbers for the fortran column have been obtained using the
default output from madgraph. For the CPU we use an Intel(R) Core(TM) i7 CPU 970 @
3.20GHz. For the FPGA (DSP) we use a VCU13P FPGA running at 645 MHz. For the FPGA (AI
CORES) we are using a VERSAL board.

N
color

t
it

CPU (fortran) t
it

FPGA (DSP) t
it

FPGA (AI Cores)

6 1.00 0.043 2.7

27 2.00 0.14 Work in progress

120 29.00 0.45 Work in progress

https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html

Carlos Vico Villalba (University of Oviedo – ICTEA) 19

Conclusions

 MC simulation of high energy physics using hardware accelerators

● In this talk we have presented a first temptative implementation of the color calculation in a FPGA device.
○ How does an FPGA work.
○ A priori limitations.

● We have started to compare the performance between CPU and two different implementations of the color
matrix calculation in FPGA.

● Our metric so far: How much time does it get an output per call.
○ Good improvement in timings between CPU and FPGA (DSP).
○ Further optimization needs to be done in the FPGA (AI CORE) implementation to get competitive result.

● To be done in following iterations:
○ Test another implementation in High Level Synthesis language (a C++ interface to VHDL).
○ Comparisons with GPU performance!
○ Test compatibility of results between CPU/FPGA.
○ Test against cudacpp CPU implementation (possibly faster?)
○ Test the overall time taken to perform the whole integration.

carlos.vico.villalba@cern.ch

backup

20

21

Considerations when developing a FPGA application

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources to perform the task?

IN
PU

T

O
U

TP
U

T

Occupancy << 1%

22

Considerations when developing a FPGA application

IN
PU

T

O
U

TP
U

T

Occupancy >> 1%
Image used for illustration purposes of a more
complex operation.

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.

23

Considerations when developing a FPGA application

IN
PU

T

O
U

TP
U

T

Occupancy >> 1%
Image used for illustration purposes of a more
complex operation.

● Things that significantly affect AREA:
○ Divisions, exponentiations, …
○ Floating point operations.

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.

24

Considerations when developing a FPGA application

IN
PU

T

O
U

TP
U

T

Occupancy >> 1%
Image used for illustration purposes of a more
complex operation.

● Things that significantly affect AREA:
○ Divisions, exponentiations, …
○ Floating point operations.

Note modern day FPGAs have a ton of resources, so area
is in some cases not the most limiting factor.

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.

25

Considerations when developing a FPGA application

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.
○ Timing constraints: algorithm meets the required clock frequency while maintaining correct functionality?

■ Pipelining: Pipelining is a technique that improves data processing speed by breaking operations
into smaller sequential stages, allowing partial results to be processed concurrently.

■ After a certain number of cycles, the pipeline reaches a steady state where one output is produced
per clock cycle

26

Considerations when developing a FPGA application

Example of a non-pipelined designed. This design requires 3 clocks to finish,
but only 1 is used, leading to time slack.

Example of a pipelined designed. This design uses more registers to
keep processing inputs while the final result of the first set of inputs
is not finished yet. Consequence: more area.

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.
○ Timing constraints: algorithm meets the required clock frequency while maintaining correct functionality?

■ Pipelining: Pipelining is a technique that improves data processing speed by breaking operations
into smaller sequential stages, allowing partial results to be processed concurrently.

■ After a certain number of cycles, the pipeline reaches a steady state where one output is produced
per clock cycle

27

Considerations when developing a FPGA application

● There are two main considerations to be taken into account.
○ Area constraints: do we have enough resources (LUTs, FFs, BRAMS, DSPs, etc…) to perform the task?

■ The more operations we have to do (in parallel) → the more resources we consume.
○ Timing constraints: algorithm meets the required clock frequency while maintaining correct functionality?

■ Pipelining: Pipelining is a technique that improves data processing speed by breaking operations
into smaller sequential stages, allowing partial results to be processed concurrently.

■ After a certain number of cycles, the pipeline reaches a steady state where one output is produced
per clock cycle

Example of a non-pipelined designed. This design requires 3 clocks to finish,
but only 1 is used, leading to time slack.

Example of a pipelined designed. This design uses more registers to
keep processing inputs while the final result of the first set of inputs
is not finished yet. Consequence: more area.

Improved

throughput!

28

Implementation of the color decomposition in FPGA AI Cores

● The previous implementation is done using Digital Signal Processors (DSP), Blocks of ram (BRAM), Lookup
Tables (LUTs), and other kids of hardware components.

○ Problem: DSP do not handle well floating point precission.
● Modern day FPGA boards (see Versal FPGA) include what is called Adaptive Intelligence (AI) engines.

○ Specialized processing blocks optimized for high-throughput, low-latency workloads

● AI engines are:
○ Arrays of cores for parallel processing.
○ Each core can process vectors in

parallel at higher speeds (1.25 GHz).
● Each core can handle:

○ 32 KB data memory
○ 16 KB program memory
○ Efficient data flow.

https://fidus.com/blog/versal-fpga-platform-a-comprehensive-guide/

29

Implementation of the color decomposition in FPGA AI Cores

● Our versal board has ~400 AI engines.
● Even for gg→tt+3j (Ncolor = 120) we can use

one kernel per matrix row.
● Each kernel output is passed to the next

kernel for accumulating the Matrix1 result
● Tested so far with gg→tt+1j (Ncolor = 6)

Occupation diagram

30

Comparison results

● We have computed a first preliminary comparison of the performance between CPU/ FPGA DSPs / FPGA AI
Cores.

Time spent in one call to the color matrix calculation for different architectures, expressed in
microseconds (μs). The numbers for the fortran column have been obtained using the
default output from madgraph. For the CPU we use an Intel(R) Core(TM) i7 CPU 970 @
3.20GHz. For the FPGA (DSP) we use a VCU13P FPGA running at 645 MHz. For the FPGA (AI
CORES) we are using a VERSAL board.

N
color

t
it

CPU (fortran) t
it

FPGA (DSP) t
it

FPGA (AI Cores)

6 1.00 0.043 2.7

27 2.00 0.14 Work in progress

120 29.00 0.45 Work in progress

https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html

31

Implementation of the color decomposition in FPGA (VHDL)

● Second step: validation in simulation

Schematic view of the signals
throughout one call to the
matrix color code.

One has to take into account that in a
FPGA, variables become signals.

This is the first working version for
the computation with VHDL

implementation.

