Signal Drop in Mass Density Profiles: Combining Lensing Simulations and Observations

David Crespo

(Joaquin Gonzalez-Nuevo, Laura Bonavera, Marcos M. Cueli, Rebeca Fernández-Fernández & Jose Manuel Casas)

Oviedo; June 20, 2025

[Crespo et al. 2024; Crespo et al. 2025 (submitted)]

Jornadas del ICTEA 2025 ICTEA Days 2025

Universidad de Oviedo

Crespo D.

doi: 10.1051/0004-6361/202347426

Oviedo; June 20, 2025

. / 21

Introduction

2 Data and Methodology

3 Results

4 Conclusions

Results

Magnification bias

... is a gravitational lensing effect. Excess/Deficit of background sources nearby the lens position

Magnification bias

... is a gravitational lensing effect. Excess/Deficit of background sources nearby the lens position

$$N(>S) = N_0 S^{-\beta}$$

 $\beta > \mathbf{1} \to \mathsf{Amplification}$

 $\label{eq:bound} \begin{array}{l} \beta > \mathbf{2} \rightarrow \text{Optimal for Weak lensing} \\ \text{events} \end{array}$

Magnification bias

... is a gravitational lensing effect. Excess/Deficit of background sources nearby the lens position

$$N(>S) = N_0 S^{-\beta}$$

$$eta > \mathbf{1} o \mathsf{Amplification}$$

eta > 2
ightarrow Optimal for Weak lensing events direct probe of total mass (\sim dark matter)

Magnification bias

... is a gravitational lensing effect. Excess/Deficit of background sources nearby the lens position

$$N(>S) = N_0 S^{-\beta}$$

$$eta > \mathbf{1} o \mathsf{Amplification}$$

eta > 2
ightarrow Optimal for Weak lensing events direct probe of total mass (\sim dark matter)

... foreground-background number correlation

Introduction

2 Data and Methodology

3 Results

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

High redshift distribution

- Steep source number counts
- 3 Fairly invisible in the optical band

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

High redshift distribution

- Steep source number counts
 - Fairly invisible in the optical band

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

- I High redshift distribution
- Steep source number counts
- Fairly invisible in the optical band

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

- I High redshift distribution
- Steep source number counts
- Fairly invisible in the optical band

Optimal background sources for weak lensing studies!

The background and foreground samples

Background sample: **Sub-millimetre galaxies** (SMGs) by Herschel Space Observatory in H-ATLAS (e.g. Eales et al. 2010, Valiante et al. 2016)

- High redshift distribution
- ② Steep source number counts
- Fairly invisible in the optical band

Optimal background sources for weak lensing studies!

Improve positional accuracy: **SMGs** by a cross match with NASA's Wide-field Infrared (WISE, Wright et al. 2010) and H-ATLAS

The background and foreground samples

Foreground samples:

• Galaxies in the GAMA II spectroscopic survey (Driver et al. 2011; Baldry et al. 2010, 2014; Liske et al. 2015) Overlapping: GAMA(9h,12h,14.5h) region

• Quasi-stellar Objects (QSOs) in SDSS-II and SDSS-III; DR7(Schneider et al. 2010) and DR12 (Pâris et al. 2017)

Overlapping: GAMA(9h,12h,14.5h) and NGP regions

- Clusters by Sloan Digital Sky Survey III (SDSS III) (Wen et al. 2012) Overlapping: GAMA(9h,12h,14.5h) and NGP regions
- Clusters by SDSS (Zou et al. 2021) Overlapping: GAMA(9h,12h,14.5h) and NGP regions

Results

The background and foreground samples

Results

Conclusions

The background and foreground samples

Background (SMGs): (32.306) (64065) $1.2 < z_{phot} < 4.0$

- Galaxies (102.672) $0.2 < z_{spec} < 1.0$
- QSOs (1.546) 0.2 < z_{spec} < 1.0
- Clusters (3.651) $0.05 < z_{spec} < 0.8$
- Clusters ZOU (9.056)
 0.05 < z_{spec} < 0.8

Results

Conclusions

The background and foreground samples

Background (SMGs): (32.306) (64065) $1.2 < z_{phot} < 4.0$

- Galaxies (102.672)
 0.2 < z_{spec} < 1.0
- QSOs (1.546)
 0.2 < z_{spec} < 1.0
- Clusters (3.651) $0.05 < z_{spec} < 0.8$
- Clusters ZOU (9.056)
 0.05 < z_{spec} < 0.8

Results

Conclusions

The background and foreground samples

Background (SMGs): (32.306) (64065) $1.2 < z_{phot} < 4.0$

- Galaxies (102.672) 0.2 < z_{spec} < 1.0
- QSOs (1.546) $0.2 < z_{spec} < 1.0$
- Clusters WEN (3.651)
 0.05 < z_{spec} < 0.8
- Clusters ZOU (9.056)
 0.05 < z_{spec} < 0.8

Results

Conclusions

The background and foreground samples

Background (SMGs): (32.306) (64065) $1.2 < z_{phot} < 4.0$

- Galaxies (102.672) 0.2 < z_{spec} < 1.0
- QSOs (1.546) $0.2 < z_{spec} < 1.0$
- Clusters (3.651) $0.05 < z_{spec} < 0.8$
- Clusters ZOU (9.056)
 0.05 < z_{spec} < 0.8

Introduction	Data and Methodology	Results	Conclusions
00	00000●0	00000000	
Stacking			

Advantages:

- Positional errors
- Follow the pairs contributing to the final stacked map

We compute the RR term theoretically from the annulus area considering a constant surface density

constant surface density

The CCF estimator (Davis & Peebles et al. ,1983):

$$ilde{w}_{x}(heta) = rac{\mathsf{D}\mathsf{D}}{\mathsf{R}\mathsf{R}} - 1$$

Results

Mass density profiles

CCF between lenses-background

$$w_x(heta; z_l, z_b) = \mu^{eta - 1} - 1$$

Results

Mass density profiles

CCF between lenses-background

$$w_{\mathsf{x}}(heta; z_l, z_b) = \mu^{\beta-1} - 1$$

Navarro-Frenk-White profile (NFW)

$$\rho_{NFW} = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

Results

Mass density profiles

CCF between lenses-background

$$w_x(\theta; z_l, z_b) = \mu^{\beta-1} - 1$$

Navarro-Frenk-White profile (NFW) Singular Isothermal Sphere profile (SIS)

$$\rho_{NFW} = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

$$\rho_{SIS} = \frac{\sigma_v^2}{2\pi G r^2}$$

Results

Mass density profiles

CCF between lenses-background

$$w_x(\theta; z_l, z_b) = \mu^{\beta-1} - 1$$

Navarro-Frenk-White profile (NFW) Singular Isothermal Sphere profile (SIS)

$$\rho_{NFW} = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

$$\rho_{SIS} = \frac{\sigma_v^2}{2\pi G r^2}$$

The Sérsic profile

$$\Sigma_{Sersic} = \Sigma_e \cdot exp\left(-b_n\left(\left(\frac{\theta}{\theta_e}\right)^{1/n} - 1\right)\right)$$

Int 00	roduction Data	and Methodology 00●		Results 00000000	Conclus 00	
N	lass density profile	2S				
	CCF between lenses-b	packground				
		$w_{x}(\theta; z_{l}, z_{b}) =$	= μ^{eta-1} –	- 1		
	Navarro-Frenk-White (NFW)	profile	Singul	ar Isothermal Sp (SIS)	here profile	9
	$\rho_{NFW} = \frac{\rho_s}{(r/r_s)(1+r_s)}$	$(-r/r_s)^2$		$ ho_{SIS} = rac{\sigma}{2\pi G}$	² Gr ²	
	The Sérsic profi	le		Burkert pr	ofile	
Σε	Gersic = $\Sigma_e \cdot exp\left(-b_n\right)$	$\left(\left(\frac{\theta}{\theta_e}\right)^{1/n} - 1\right)$)))	$ \rho_{Burkert} = rac{1}{(r+1)} $	$\frac{\rho_0 r_c^3}{r_c)(r^2 + r_c^2)}$	<u>2</u>)
	Crespo D.	doi: 10.1051/0004-	6361/20234	7426 Oviedo; Jun	ie 20, 2025 10) / 21

Introduction

Data and Methodology

3 Results

00	0000000	00000000	00
H-ATLAS	vs WISE		
	D [kr 10 ¹	10 ²	
-	I I I IIII	 Image: Hatlas Image: Wise]
10 ¹			
(b) 10 ⁰	· · · · · · · · · · · · · · · · · · ·	r X X	
2	T	≖ ॼ ॼ ^{ॼॼ} ॼॼॼॼॼ ॻ॓॓ॻ _ॎ ा [†] ॻॕॻॻॾड़ॻॻ	
10 ⁻¹	I		
10 ⁻² -			
	TO.	10- 10-	

 θ [arcsec]

12/21

Reculte

Results 0●0000000

H-ATLAS vs WISE

Introduction	Data and Methodology 0000000	Results o●ooooooo	Conclusio 00
H-ATLAS	vs WISE		
	D [kpc]	10 ²	
10 ¹ 10 ⁰ (0) × 10 ⁻¹			s
10 ⁻² -	Ĭ		

 10^{-2} 10^{0} 10^{1} θ [arcsec]

Results 0●0000000

H-ATLAS vs WISE

Introduction	Data and Methodology 0000000	Results 00●000000	Conclusions

Low-resolution vs High-resolution

Introduction	Data and Methodology	Results	Conclusions
00	0000000	00●000000	
Low-resolution v	rs High-resolution		

Low-resolution vs High-resolution

Introduction	Data and Methodology	Results	Conclusions
00	0000000	00●000000	
Low-resolution \	vs High-resolution		

Introduction	Data and Methodology	Results	Conclusions
00	0000000	000●00000	
Galaxies case			

npix=400 σ =2.4 arcsec

Introduction	Data and Methodology	Results	Conclusions
00	0000000	000●00000	
Galaxies case			

npix=2000 σ =0.3 arcsec

Introduction	Data and Methodology	Results	Conclusions
00	0000000	0000●0000	
QSOs case			

npix=400 σ =2.4 arcsec

Introduction	Data and Methodology	Results	Conclusions
00	0000000	0000●0000	
QSOs case			

npix=2000 σ =0.3 arcsec

Results 00000●000

Clusters Wen catalogue case

npix=400 σ =2.4 arcsec

Results 00000●000

Clusters Wen catalogue case

npix=2000 σ =0.3 arcsec

Results 000000●00

Clusters Zou catalogue case

npix=400 σ =2.4 arcsec

Results 000000●00

Clusters Zou catalogue case

npix=2000 σ =0.3 arcsec

Results 0000000●0

Analysis of the lack of signal

Galaxy cluster satellite positions

28 Clusters from:

• Berkeley 67, King 2, NGC 2420, NGC 2477, NGC 2682, NGC 6940 (Jadhav et al. 2021)

- IC 2391 (Platais et al. 2007)
- NGC 3532 (Fritzewski et al. 2019)
- NGC 6366 (Sariya & Yadav 2015)
- NGC 6530 (Zhao et al. 2006)
- BPMG, Cha I, IC 2395, IC 348, IC
- 4665, LCC, NGC 1333, NGC 1960,
- NGC 2232, NGC 2244, NGC 2362,
- NGC 2547, Pleiades, THA, Taurus,
- UCL, Upper Sco (Meng et al. 2017)
- NGC 2548 (Wu et al. 2002)

Results 000000000 Conclusions

Analysis of the lack of signal

Galaxy cluster satellite positions

540.433 Clusters from Zou et al. 2021

Results

Analysis of the lack of signal.

Magnification bias simulation

Results

Analysis of the lack of signal.

Magnification bias simulation

Results

Analysis of the lack of signal.

Magnification bias simulation

Introduction

Data and Methodology

3 Results

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.

- WISE positions reveal two distinct regimes separated by a region with a lack of signal.
- QSOs producing the strongest signal and WEN clusters exhibiting weaker signals.
- Low-resolution data show "point-like" central mass distribution for all lens types, fitting well with most profiles except Burkert.
- Higher resolution provides more detailed information, allowing clearer distinctions between lens types.
- Central excess shifts to smaller angular separations with higher values \rightarrow increase in the signal void region around 3-5 arcsec for all cases.
- Further detailed analysis of cluster members reveals that the effect is not due to a lack of mass.
- A new simulator incorporating strong lensing effects suggests that these could explain the observed signal void.