Candidate Gravitationally Lensed Submillimeter Galaxies in Herschel-ATLAS Associated with WISE Elliptical Counterparts

on behalf of J. González-Nuevo, L. Bonavera, M.M. Cueli, T. Bakx, J.M. Casas, D. Crespo and R. Fernández Fernández

- Submillimeter galaxies (SMGs) are a population of high-redshift (z > 1), dust-obscured galaxies with extreme star formation rates.
- Ideal targets for gravitational lensing studies \rightarrow cosmological tool.

Credit: ALMA (ESO/NRAO/NAOJ).

- Submillimeter galaxies (SMGs) are a population of high-redshift (z > 1), dust-obscured galaxies with extreme star formation rates.
- \bullet Ideal targets for gravitational lensing studies \rightarrow cosmological tool.
- Strong lensing: high magnification and distortion \rightarrow case-by-case analyses.
- Weak lensing: mild magnification and distortion \rightarrow statistical analyses.

Magnification and distortion created by a lens over a circular source. Credit: Shuntov (2019).

- Catalogs of confirmed strongly lensed galaxies in the sub-mm (e.g., Negrello et al. 2017; Bakx et al. 2024).
- We present a new method to identify gravitational lens candidates within the *Herschel*-ATLAS and AllWISE surveys.
- SED analysis performed with CIGALE code (Boquien et al. 2019).
- Estimation of their main physical parameters.

Survey	Filters	10 ³ HATLASJ014247.5-301140
GALEX SDSS VST-ATLAS Pan-STARRS1 VISTA-VIKING UKIRT 2MASS WISE Herschel/PACS Herschel/SPIRE	<i>FUV</i> , <i>NUV</i> <i>u</i> , <i>g</i> , <i>r</i> , <i>i</i> , <i>z</i> <i>u</i> , <i>g</i> , <i>r</i> , <i>i</i> , <i>z</i> <i>g</i> , <i>r</i> , <i>i</i> , <i>z</i> , <i>y</i> <i>J</i> , <i>H</i> , <i>K</i> _s <i>J</i> , <i>H</i> , <i>K</i> <i>J</i> , <i>H</i> , <i>K</i> <i>K</i> <i>K</i>	$\begin{array}{c} 10^{3} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{0} \\ 10^{-1} \\ 10^{0} \\ 10^{-1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{2} \\ 10^{$
		λ (μm)

- Catalogs of confirmed strongly lensed galaxies in the sub-mm (e.g., Negrello et al. 2017; Bakx et al. 2024).
- We present a new method to identify gravitational lens candidates within the *Herschel*-ATLAS and AllWISE surveys.
- SED analysis performed with CIGALE code (Boquien et al. 2019).
- Estimation of their main physical parameters.

Survey	Filters	10 ³ HATLASJ014247.5-301140
GALEX	FUV, NUV	$\chi^2_{r, lens} = 0.87$ A
SDSS	u,g,r,i,z	$10^{-1} \chi^{2}_{r, SMG} = 0.70^{-1} \eta_{mm_{m}}$
VST-ATLAS	u,g,r,i,z	
Pan-STARRS1	g, r, i, z, y	
VISTA-VIKING	J, H, K_s	
UKIRT	J, H, K	
2MASS	J, H, K_s	
WISE	$3.4, 4.6, 12, 22 \ (\mu m)$	10^{-2} $Z_L = 0.50$
Herschel/PACS	100, 160 (μm)	$z_{s} = 2.1$
Herschel/SPIRE	$250, 350, 500 \ (\mu m)$	10^{-3} 10 ⁻¹ 10^{0} 10^{1} 10^{2}
		-

Selection methodology

Wright et al. (2010)

- High-redshift SMGs in H-ATLAS: $1.2 < z_{smm} < 4.0$
- Elliptical galaxies in AllWISE: 0.5 < W2 W3 < 1.5, |W1 W2| < 0.3
- Three possible explanations:
 - ▷ Those objects are actually the same.
 - ▷ Those objects are different, but they were identified as the same due to cross-match errors.
 - ▷ Those objects are different and form a gravitational lens.

Validation

Star/Galaxy separation:

• Ellipticals share similar WISE colours with stars.

Other issues:

• Cross-matching errors (multiple counterparts, blending, etc).

SED analysis results

• Independent analysis for the lens and sub-mm components of the SED.

SED analysis results

• Independent analysis for the lens and sub-mm components of the SED.

Magnification estimates

Assumptions:

• M_h: Stellar-to-halo mass relation from Moster et al. (2013).

•
$$M_{lens} = M_{\star} + M_{dust} + M_{gas} + M_h$$
.

• Halo model: Singular Isothermal Sphere (SIS).

Conclusions

Pros:

- A completely new method for selecting gravitational lens candidates.
- Not biased towards high sub-mm fluxes nor magnifications.
- 68 new candidates were found.

Cons:

- High stellar contamination.
- Cross-matching uncertainties.
- It assumes that the lenses are brighter than SMGs at MIR wavelengths.

Future steps

- High resolution observations.
- All-sky survey on the far infrared needed.

Conclusions

Pros:

- A completely new method for selecting gravitational lens candidates.
- Not biased towards high sub-mm fluxes nor magnifications.
- 68 new candidates were found.

Cons:

- High stellar contamination.
- Cross-matching uncertainties.
- It assumes that the lenses are brighter than SMGs at MIR wavelengths.

Future steps

- High resolution observations.
- All-sky survey on the far infrared needed.

