5d SCFTs, Brane Webs, Geometric Engineering and the Tangram

Ignacio Carreño Bolla

UNIVERSIDAD DE OVIEDO AND ICTEA

Based on:

ICB, S. Franco, D. Rodriguez-Gomez [2411.01510]

Jornadas ICTEA, Oviedo, 19th-20th June 2025

University of Oviedo

1. Introduction to 5d SCFTs

2. Geometric Engineering and Brane Webs

3. Toric Theories, GTPs and The Tangram

1. Introduction to 5d SCFTs

2. Geometric Engineering and Brane Webs

3. Toric Theories, GTPs and The Tangram

• **QFTs** are one of the most successful theories coming from theoretical physics (SM and condensed matter)!

- **QFTs** are one of the most successful theories coming from theoretical physics (SM and condensed matter)!
- **Supersymmetry** (SUSY) is an important *theoretical laboratory* for the study of QFTs (confinement, many AdS/CFT, dualities...)

SUSY: bosons $(\phi) \leftrightarrow$ fermions (ψ)

• As a consequence, bosons and fermions group into **supermultiplets** closed under the SUSY swapping

$$\boldsymbol{\Phi} = (\phi, \psi)$$

One can then write Lagrangians as one does with "regular" QFTs.

• Why 5d if our universe is (macroscopically) 4d? Consider Yang-Mills in arbitrary dimensions

$$S_{
m YM} = -rac{1}{4g^2}\int d^dx \; {
m Tr}(F^{\mu
u}F_{\mu
u})$$

the dimension of the coupling is $[g^{-2}]=d-4$. If d = 5, its dimensionful and YM cannot be renormalized!

• Why 5d if our universe is (macroscopically) 4d? Consider Yang-Mills in arbitrary dimensions

$$S_{
m YM} = -rac{1}{4g^2}\int d^dx \; {
m Tr}(F^{\mu
u}F_{\mu
u})$$

the dimension of the coupling is $[g^{-2}]=d-4$. If d = 5, its dimensionful and YM cannot be renormalized!

 The theory is not defined in the UV (E → ∞), so gauge theories (e.g. SM) are only low energy EFTs (defined up to an energy scale Λ < ∞). • Why 5d if our universe is (macroscopically) 4d? Consider Yang-Mills in arbitrary dimensions

$$S_{
m YM} = -rac{1}{4g^2}\int d^dx \; {
m Tr}(F^{\mu
u}F_{\mu
u})$$

the dimension of the coupling is $[g^{-2}]=d-4$. If d = 5, its dimensionful and YM cannot be renormalized!

- The theory is not defined in the UV (E → ∞), so gauge theories (e.g. SM) are only low energy EFTs (defined up to an energy scale Λ < ∞).
- How can we define gauge theories from the UV in 5d?

• Using string theory, it was found that there exist strongly coupled $(1/g^2 = 0)$ and scale invariant (conformal) interacting SUSY theories !

- Using string theory, it was found that there exist strongly coupled $(1/g^2 = 0)$ and scale invariant (conformal) interacting SUSY theories !
- We can then, "turn on" the YM theory by making $1/g^2 \neq 0$

$$\mathcal{L} = \mathcal{L}_{UV} + 1/g^2 \mathcal{L}_{YM}$$

This is a mass deformation of the theory.

- Using string theory, it was found that there exist strongly coupled $(1/g^2 = 0)$ and scale invariant (conformal) interacting SUSY theories !
- We can then, "turn on" the YM theory by making $1/g^2
 eq 0$

$$\mathcal{L} = \mathcal{L}_{UV} + 1/g^2 \mathcal{L}_{YM}$$

This is a mass deformation of the theory.

• Since $[1/g^2] = 1$, the deformation is **relevant** and will dominate if we consider the theory at low energy.

- Using string theory, it was found that there exist strongly coupled $(1/g^2 = 0)$ and scale invariant (conformal) interacting SUSY theories !
- We can then, "turn on" the YM theory by making $1/g^2 \neq 0$

$$\mathcal{L} = \mathcal{L}_{UV} + 1/g^2 \mathcal{L}_{YM}$$

This is a mass deformation of the theory.

- Since $[1/g^2] = 1$, the deformation is **relevant** and will dominate if we consider the theory at low energy.
- All in all, starting from this **UV SCFT** theory we recover gauge theories at low energy!

Supermultiplets of 5d SCFTs

- 5d SUSY theories have two types of supermultiplets:
 - Vector: 1 A_{μ} gauge field + 2 Majorana fermions ψ_i + 1 ϕ real scalar.
 - Hypermultiplet: 2 complex scalars H_{α} + 1 Dirac fermion Ψ .

Supermultiplets of 5d SCFTs

- 5d SUSY theories have two types of supermultiplets:
 - Vector: 1 A_{μ} gauge field + 2 Majorana fermions ψ_i + 1 ϕ real scalar.
 - Hypermultiplet: 2 complex scalars H_{α} + 1 Dirac fermion Ψ .
- Scalars appear in the action in a superpotential V (polynomial of ϕ). The minima $\partial V / \partial \phi = 0$ defines a **moduli space**.

• The moduli space has as coordinates the (VEVs of) the scalars and the origin is the **SCFT** point

- The moduli space has as coordinates the (VEVs of) the scalars and the origin is the **SCFT** point
 - Extended Coulomb branch (ECB): ϕ from vectors.
 - If gauge: $G \to U(1)^r$ (Coulomb branch).
 - If global: mass deformations.

- The moduli space has as coordinates the (VEVs of) the scalars and the origin is the **SCFT** point
 - Extended Coulomb branch (ECB): ϕ from vectors.
 - If gauge: $G \rightarrow U(1)^r$ (Coulomb branch).
 - If global: mass deformations.
 - Higgs Branch (HB): H_{α} hyper. Break completely $G \rightarrow 0$.

1. Introduction to 5d SCFTs

2. Geometric Engineering and Brane Webs

3. Toric Theories, GTPs and The Tangram

• The UV SCFTs are strongly-coupled $(1/g^2 = 0)$ and are hard to define. But we can use geometry via geometric engineering!

- The UV SCFTs are strongly-coupled $(1/g^2 = 0)$ and are hard to define. But we can use geometry via geometric engineering!
- Consider M-theory (11d) on a geometry $\mathbb{R}^{1,4} \times M_6$. This M_6 is a 6d geometry called a Calabi-Yau (CY), that "is compatible with SUSY".

- The UV SCFTs are strongly-coupled $(1/g^2 = 0)$ and are hard to define. But we can use geometry via geometric engineering!
- Consider M-theory (11d) on a geometry $\mathbb{R}^{1,4} \times M_6$. This M_6 is a 6d geometry called a Calabi-Yau (CY), that "is compatible with SUSY".
- This CY should also be **singular**. These singularities can be removed in two ways:
 - **Resolution:** replace the singular point p by a sphere $S^2 \cong \mathbb{P}^1$.
 - Deformation: the CY is defined by polynomial equations

$$f(z) = 0
ightarrow^{ ext{deform}} f(z) + \mu \, g(z) = 0$$

The singularity disappears!

- The UV SCFTs are strongly-coupled $(1/g^2 = 0)$ and are hard to define. But we can use geometry via geometric engineering!
- Consider M-theory (11d) on a geometry $\mathbb{R}^{1,4} \times M_6$. This M_6 is a 6d geometry called a Calabi-Yau (CY), that "is compatible with SUSY".
- This CY should also be **singular**. These singularities can be removed in two ways:
 - **Resolution:** replace the singular point p by a sphere $S^2 \cong \mathbb{P}^1$.
 - Deformation: the CY is defined by polynomial equations

$$f(z) = 0
ightarrow^{\mathsf{deform}} f(z) + \mu g(z) = 0$$

The singularity disappears!

• Then we can encode

$$ECB = Resolutions$$
, $HB = Deformations$

So the singularity data is a dictionary for the QFT!

Brane Junctions

- We can also build 5d SCFTs from **Type IIB string theory** (10 d). The ingredients are:
 - **D***p* **branes**: Strings end on "hypersurfaces" of *p* + 1 dimensions. We are interested on D5 and D7 branes.
 - NS5 branes: "magnetic dual" to the string, they have 5+1 dimensions.

Charge: D5=(1,0) and NS5=(0,1) (can be "inverted" (-1,0), (0,-1)).

Brane Junctions

- We can also build 5d SCFTs from **Type IIB string theory** (10 d). The ingredients are:
 - **D***p* **branes**: Strings end on "hypersurfaces" of *p* + 1 dimensions. We are interested on D5 and D7 branes.
 - NS5 branes: "magnetic dual" to the string, they have 5+1 dimensions.

Charge: D5=(1,0) and NS5=(0,1) (can be "inverted" (-1,0), (0,-1)).

• We can create **junctions** between D5 and NS5 such that *the charge is conserved*. This preserves SUSY and results in a bound-brane of type (-1, -1).

• We can consider more general bound states of (p, q) 5-branes that join at the same point such that charge is conserved/ it is SUSY.

The SCFT lives at the 5d intersection of the branes and we make the 5-branes end on 7-branes (with the same (p, q) charge).

Extended Coulomb Branch in brane webs

• ECB moduli = breaking up the brane web into **irreducible supersymmetric 3-junctions**.

We can open the web in two ways:

• Keep the same asymptotic position of the external 5-branes= Coulomb branch.

• Alter the position of the external 5-branes= mass deformations (e.g. YM deformation).

1. Introduction to 5d SCFTs

2. Geometric Engineering and Brane Webs

3. Toric Theories, GTPs and The Tangram

 If the Calabi-Yau M₆ is toric geometric engineering and brane webs are related! The brane web is dual (faces ↔ vertices) to the toric diagram (encodes the geometry).

Resolutions in brane webs

To fully resolve the toric singularity/fully open the ECB of a toric theory: we tile the toric diagram in minimal triangles ↔ open the brane web in irreducible
 3-junctions.

GTPs and The Tangram

 We can make several (p, q) branes end on the same 7-brane → Generalized Toric Polygon (GTP).

GTPs and The Tangram

- We can make several (p, q) branes end on the same 7-brane → Generalized Toric Polygon (GTP).
- To fully resolve the ECB of a GTP, the fundamental piece of the tessellation is the **T-cones**:
 - Junction of a (-p, q p), (p, -q) and p (0, 1) branes.
 - Lattice triangle whose height and length are p.

Tiling the GTP polygon = ECB = solve the **Tangram**!

Thank You!

