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● Introduction
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○ LSTM as a recursive neural network
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● Forecasting of SYM-H
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○ Uncertainty analysis
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589
https://omniweb.gsfc.nasa.gov/form/omni_min.html


Space Weather
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Space Weather
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ACE satellite

● Located at Lagrange point L1

● Measures:
a. composition, speed, and 

direction  of solar wind
b. Magnetic field strength and 

direction
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Ground observatories:
Measure magnetic field 
strength and direction

The electric field carried by the solar 
wind produces changes in magnetic 
field across Earth's surface, resulting 

in Geomagnetically Induced 
Currents (GICs)



Impacts of GICs at ground level

● Disrupt radio communication and navigation
● Impact on electric power grids
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Effects of GICs and goals

● Locations of high latitude are particularly at 
risk of the harmful effects of GICs.
○ Low latitude locations have had a history 

of GIC related events.
● The objectives of this project are to

○ forecast SYM/H (a magnetic field index) 
using data from ACE.

○ forecast magnetic field at ground level 
using data from ground observatories



Input variables
● For our two models, we use 

the same storms and time 
ranges as Siciliano et al 
because we want to 
reproduce their results.

● These were chosen for their 
size and diversity in terms 
of quantity of peaks and 
shapes.
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*storms with more than one peak

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589


Input variables: alternative split

● 2-fold cross validation is used to 
check the robustness of the 
algorithm with respect to the 
train-test-validation split.
○ The performance of the model 

might depend on the 
training-validation-test split.

○ Performance metrics in the 
second split were not different 
from the first
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Training procedure

● Two different models are constructed: 
one for L1 variables only, and one for 
Ebre variables only

● For this research, data are taken from 
ACE, at the L1 Lagrange point, and from 
the Ebre ground level observatory in 
Spain

L1 variables only

● Feature variables:
○ SYM/H
○ By² 
○ B² 
○ Bz

● Target variable
○ SYM/H (future)

Ebre variables only

● Feature variables:
○ Bx

○ By

○ Bz

● Target variable
○ Bx (future)
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*values of B**2 go below 0 because of standardization

An example of 
how the 
magnetic field 
measurements 
at both locations 
compares for 
four storms:



Training procedure

● The data has a sequence dependence because it is a time-series
● The benchmark we choose to use for forecasting is an hour

○ roughly what would be needed to respond to a GIC alert
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Choice of machine learning algorithm
● Long Short Term Memory neural network (LSTM) are good for data with a 

sequence dependence, so they are very well suited to predict time-series like 
ours.
○ LSTM an improvement on the standard recurrent neural network because it solves 

the vanishing gradient problem by making its ‘short term memory last a long time’

● LSTM vs CNN: Convolutional Neural Networks (CNN) show promise and good 
results in almost any application. However they are not better than LSTM in 
almost any of the present work’s framework.

11An LSTM cell

For the rest of the research, LSTM 
is ultimately used



Model Architecture
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LSTM layer

Hidden dense layer

Output dense layer

Hidden dense layer

…n layers… 

Input dims:
(lookback, storm length, # 

features)

Output dims:
(storm length - lookback)



Uncertainty estimation: bootstrap and dropout
● Bayesian inference suggests that common regularization techniques in machine 

learning, like bootstrap, dropout and others, are already good at providing 
uncertainty estimations for final results and predictions.

● Bootstrap vs dropout
○ In the present study, bootstrap uncertainty estimations for predictions tended 

to include more of the test data around the peaks while giving larger mean 
square error (MSE) uncertainty.
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Bootstrap procedure Dropout in different neural network layers



Bootstrap and Dropout in this work
● Bootstrap,

○ Training is repeated on 
different samplings with 
replacements of the 
original dataset.



Bootstrap and Dropout in this work
● Bootstrap,

○ Training is repeated on 
different samplings with 
replacements of the 
original dataset.

● Block bootstrap,
○ For time-series data, 

chunks of data need to 
be grouped in blocks to 
conserve time 
dependence



Bootstrap and Dropout in this work

● Dropout,
○ A set proportion of random units in the 

neural network are turned off every 
time data is predicted with the model. 
This proportion is represented by p.

● Concrete dropout
○ Continuous approximation of the 

effect of dropout on the loss function 
can be automatically optimized for the 
dropout p.

16Image source: Srivastava, Nitish, et al. ”Dropout: a simple way to prevent 
neural networks from overfitting”, JMLR 2014

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5


Hyperparameter optimization
● Hyperparameters are values that control the learning process. We identified four possibly 

important hyperparameters in our LSTM setup: learning rate, look-back time, number of 
dense hidden layers and number of units in each hidden layer.

● The choice of hyperparameter values is done by trial and error: one trains and tests data 
using different combinations of hyperparameters in their multidimensional space and 
optimises fitness or objective function result.
○ The possible combination of hyperparameter values is great or just infinite, so the 

choice of what combinations to try itself is done in different ways, 

17Random search Bayesian optimization (Optuna)

fit
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Bayesian 
optimization 
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Groups of best hyperparameter sets
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● Two trials with the same hyperparameter set can 
result in a value of the loss function that varies 
more greatly than trials with different 
hyperparameters.

● Trials with uncertainty intervals for the MSE 
estimation that overlapped with the best optuna 
result are labeled ‘best trials’

● These results show that some hyperparameters 
have optimal values at different regions, and not 
at a single optimal ‘well’



Hyperparameter optimization results

● Optuna offers a systematized way of 
searching the multidimensional 
hyperparameter space through bayesian 
optimization.
○ This is more efficient than grid search 

or random sampling
● The graph shows the relative importance 

of each hyperparameter with respect to 
the loss function
○ The learning rate, for all models, is 

always the most dominant 
contributor.
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Feature Importance
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● “Inverse” feature permutation for the calculation of feature importance with 
respect to the loss function RMSE.
○ The indicated feature is the only one with its items unshuffled



L1 predictions (SYM-H)
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● Plots show the target variable (SYM/H) 
prediction with respect to time for two of the 
17 test storms.

● The orange bands represent the 95% 
confidence interval of the predicted value by 
our model.

● The dots represent the actual test values, 
orange if within the uncertainty band and blue 
if outside the band.

● The percentage of predicted values is the 
proportion of test values inside the 
uncertainty band. This was pivotal in choosing 
bootstrap over other ways to estimate 
uncertainty look-forward : 60 mins

Storm T1

Storm T3

U
ncertainty bands: B

ootstrap w
ith 200 runs



L1 predictions (SYM-H)
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● Multiple-hour 
predictions for 
storm 11.



L1 predictions (SYM-H)
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● Multiple hour predictions for storm 11, storm 12 and all storms:
○ RMSE increases with respect to look-forward
○ RMSE uncertainty increases with respect to look-forward
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● Comparison between our 
prediction and the model from 
Siciliano et al.

● For RMSE of the target variable, all 
but six of the referenced values are 
within the 95% confidence intervals 
for the RMSE obtained with this 
work's model.

● In all of those six cases, our 
present model gives RMSE values 
that are lower with 95% 
confidence.

L1 predictions (SYM-H)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589
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● Cross-correlation between prediction and true values shows a consistent 
time mismatch throughout all look-forward predictions

L1 predictions (SYM-H)

● This time mismatch is lower than 
the look-forward, which means 
some predictive power is gained
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● PICP: the prediction 
interval coverage 
probability gives us an 
evaluation of the 
uncertainty when graphed 
with respect of σ

● By itself, the estimated 
uncertainties seems to be 
underestimated.

● By including SYM-H 
intrinsic variation, PICP 
approaches ideal value

Uncertainty analysis: intrinsic variation



Uncertainty analysis: time mismatch
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● By shifting the predictions with respect to the true values in time, we observe 
that the PICP improves when the predictions are shifted back.
○ This is a inherent feature of RNN architectures forecast models, and so 

time mismatch is a source of systematic error.
● This, together with the inclusion of the intrinsic variation of SYM-H might 

completely correct the missing uncertainty estimation.



Future work: ground level forecasting

● For the second analysis in this work, we aim 
to predict magnetic field at ground level 
using data taken only from the Ebre 
observatory at ground level.

● We are interested in forecasting the 
horizontal geomagnetic field. Bx is chosen as 
the target variable. An advantage of this 
choice over By is that Bx has the larger 
influence on the appearance of GICs.

28



Preliminary results: Ebre predictions
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Storm T5

Storm T7

look-forward : 60 mins

● We obtain an analogous model for ground level prediction, which gave a 
forecasting that contained less of the data and bigger RMSE in nT than the SYM/H 
model in comparison



Conclusions

● We obtained a forecast model for SYM/H which features uncertainty measures 
via bootstrap and dropout.

● RMSE results for L1 are either compatible with Siciliano et al in most cases or 
better in the ones that are statistically different. The improvement can be mainly 
explained by the hyperparameter optimization via Optuna and the betterment of 
the initial dataset.

● We observe that both RMSE values and their uncertainties grow with higher 
look-forward values, making forecasting increasingly more unreliable.

● Considering an ideal PICP uncertainty values appear to be underestimated. The 
intrinsic variation of SYM-H and the inherent systematic time mismatch of RNN 
architectures may explain this underestimation.

● We obtain an analogous model for ground level prediction, which gave a 
forecasting that contained less of the data (smaller PICP) and bigger RMSE than 
the SYM/H model. 30

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589


Thank you
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Model Architecture for Dropout
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LSTM layer

Output dense layer

p dropout as 
hyperparameter 

(activated also on 
predict)

Hidden dense layer

Hidden dense layer

… Concrete 
Dropout



Identified hyperparameter

● Hyperparameters are values that control the learning process. 
We identified four hyperparameters in our LSTM setup:
○ Learning rate. In this work, this value changes in a triangular cycle 

throughout epochs, and the value to be optimized is the central value of 
the cycle, with its width given by the standard deviation of the chosen trial.

○ Look-back, relevant during the preparation of data for LSTM algorithm.
○ Number of dense neural layers after the LSTM layer and before the 

output dense layer.
○ Number of units in the inner dense layers. We simplified this to mean the 

same number for all dense layers.

33



Hyperparameter search

● The choice of what combinations to try 
itself is done in different ways:

○ Grid search
○ Random Sampling
○ Optuna: Bayesian optimization flavour 

called ``Tree-structured Parzen Estimator'' 
(TPE)

○ Genetic algorithm
○ Etc… 

● Optuna offers different search algorithms. The 
one chosen was the default one, TPE, as we 
didn’t want to do more than 1000 trials and the 
hyperparameters are [almost] uncorrelated.
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An example of a 1 
hyperparameter grid 
search in Siciliano et al

Optuna cheat 
sheet taken from 
tutorial video

https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.TPESampler.html
https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.TPESampler.html
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020SW002589
https://www.youtube.com/watch?v=P6NwZVl8ttc


Comparison of RMSE with other references

● Newer works have also reproduced 
Siciliano et al results, with considerable 
improvements

● An important observation is their inclusion 
of other ACE satelite variables that we 
chose to omit

● Our data is compatible up to 2 sigma with 
their results, except in storms T17, T16, T12 
and T8 where they outperform us.
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Ground level forecasting

● Data from the Ebro in the 90’s and early 
2000s had many missing observations 
due to a nearby railway. The team at 
Ebro complemented this data by 
referring to the San Pablo de los 
Montes-Toledo observatory to compare 
and interpolate in case of gaps in the 
Ebro observations.

36



This work’s R² results vs Siciliano
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● For the coefficient of 
determination, R^2:
○ 13 of the referenced values 

are within our 95% confidence 
intervals

○ 4 of the referenced values are 
below our 95% confidence 
intervals 



PICP with time mismatch for other coverage values
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PICP with time mismatch for other coverage values
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PICP with time mismatch for other coverage values
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PICP with time mismatch for other coverage values
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PICP with time mismatch for other coverage values
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Prediction of derivative of SYM/H.
● Different time derivative calculation methods
● More noise and tighter look-forward window
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Next steps


