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The problem of choosing hyper parameters
• Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like 

events

• BDTs are the go-to tools

• Options are vast → how do we know what’s best?

• First: Define what’s “best”

• Test score

• AUC

• Other metrics (precision, recall, specificity, etc.)
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Scikit-learn’s successive halving
• IMPORTANT: Still in development

• Consider: estimator E with hyperparameter grid of N possibilities

• We have n events to train, divided into  target classesnc

• We divide the process in  iterationsp

• On each iteration, we -foldk

• Default: Stratified folding with  and test size = 0.2k = 5

• The i-th iteration uses  events, whereq

;   (default)q = min (2 × nc × k × f i, n) f = 3
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Scikit-learn’s successive halving (2)
• On the first iteration, by default we use  parametersnp

• HalvingRandomSearch: np = n//q(i = 0)

• HalvingGridSearch: np = N

• Number of iterations: p = 1 + floor(logf np)

• At the end of each iteration, we keep ceil(np/f )

• Notice: In the end,  doesn’t really matter for random halvingN
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• We want to use sklearn’s AdaBoostClassifier, which 
takes in:
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(default: None)

• Number of estimators → Let us take [20, 250] in steps 
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Practical examples
• Two simple examples on sklearn’s digits dataset:


https://github.com/miguel-fernandez/comcha23/blob/main/halving.py 


https://github.com/miguel-fernandez/comcha23/blob/main/halving2.py 
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Optuna
• Optuna is a more generic approach to the search of hyper parameters


• It can also implement successive halving inside


• General concept:


• Define a function to maximize or minimise (e.g., the accuracy)


• Define a hyper parameter space (can be even more generic than in sklearn)


• Do random approaches, exploiting the areas where the function looks more 
promising
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Optuna’s language
• Every hyperparameter search is called a study 

• We define an objective function to minimize/maximize


• Each study is comprised of several tries


• Each try is a random sampling on the hyperparameter space


• A hyperparameter combination is chosen


• The objective function outputs a value, which optuna uses to learn in 
subsequent trials
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Optuna example
• Basic example: 


https://github.com/miguel-fernandez/comcha23/blob/main/optuna_test.py 


• Challenge:


• Implement halving2.py on optuna
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Some minor gripes with sklearn…
• No easy implementation of a holdout sample (very easy to train-test split)


• No easy implementation of spectator variables


• This, combined with the desire to create easier access to Hyperparameter 
fine-tuning led me to putting together a still-in-development package:


https://github.com/miguel-fernandez/hep-mva 
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