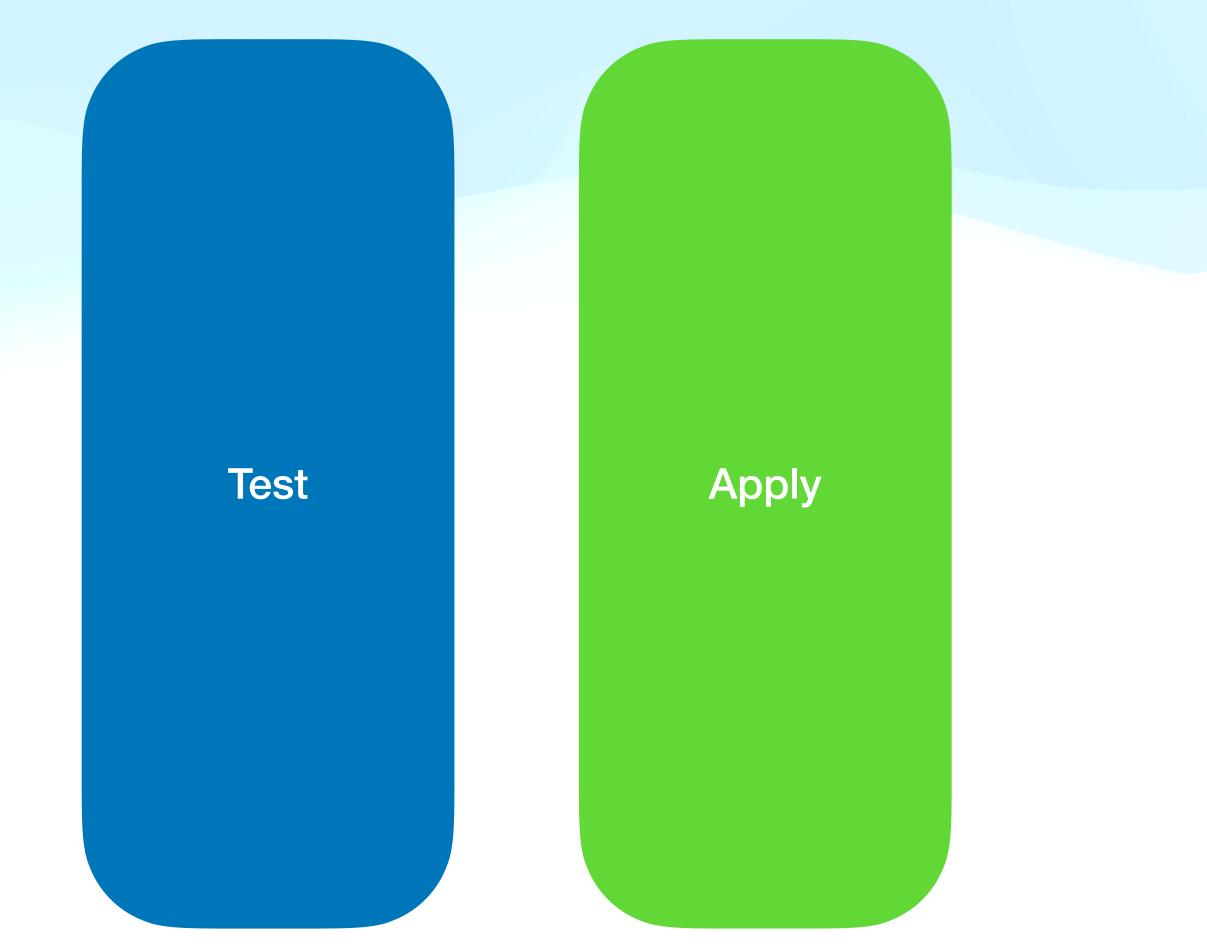
Fine-tuning the hyper parameters for a classifier in HEP

Miguel Fernández Gómez 3rd COMCHA lectures

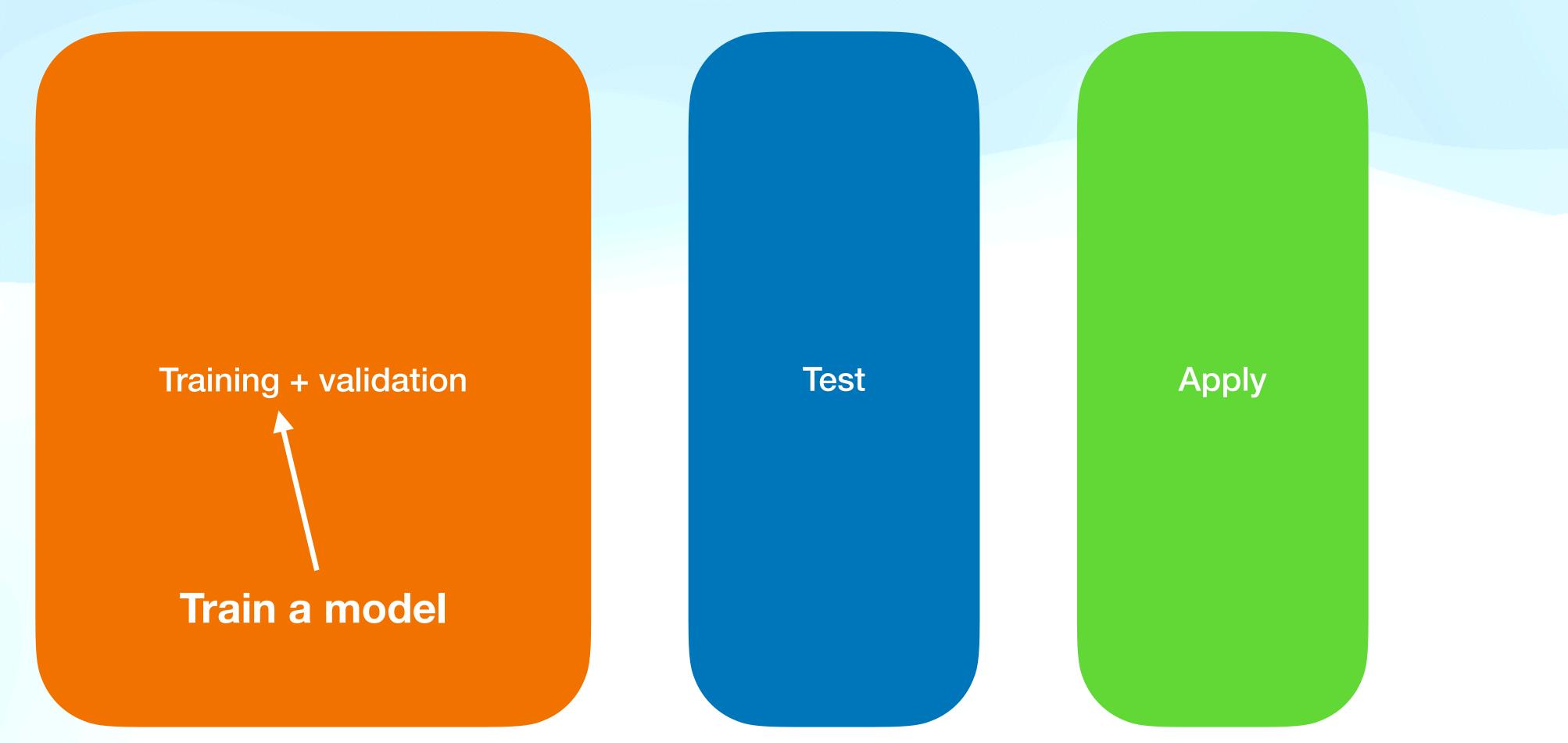
We want to train a model to help us differentiate between output classes

- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks

- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks

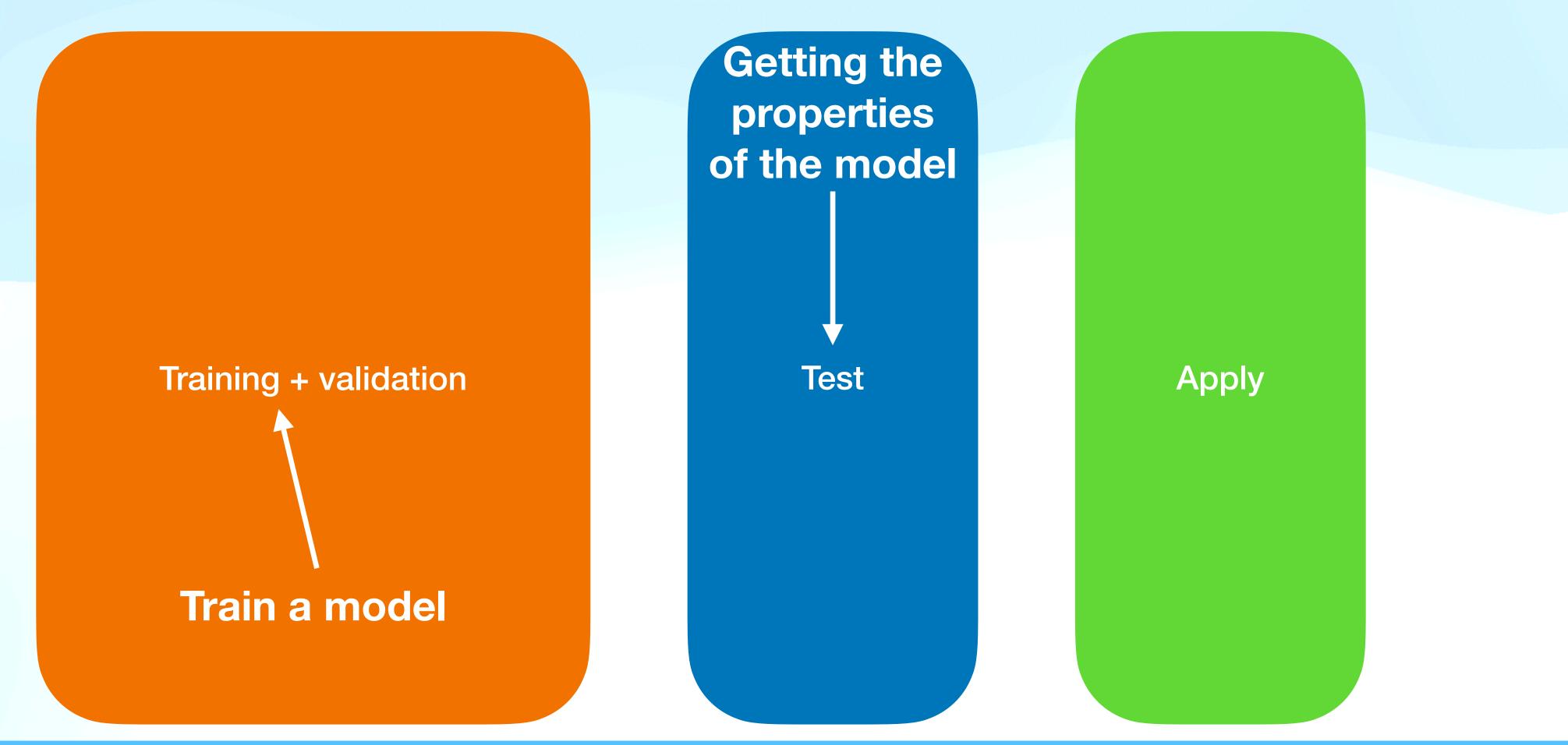


- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks



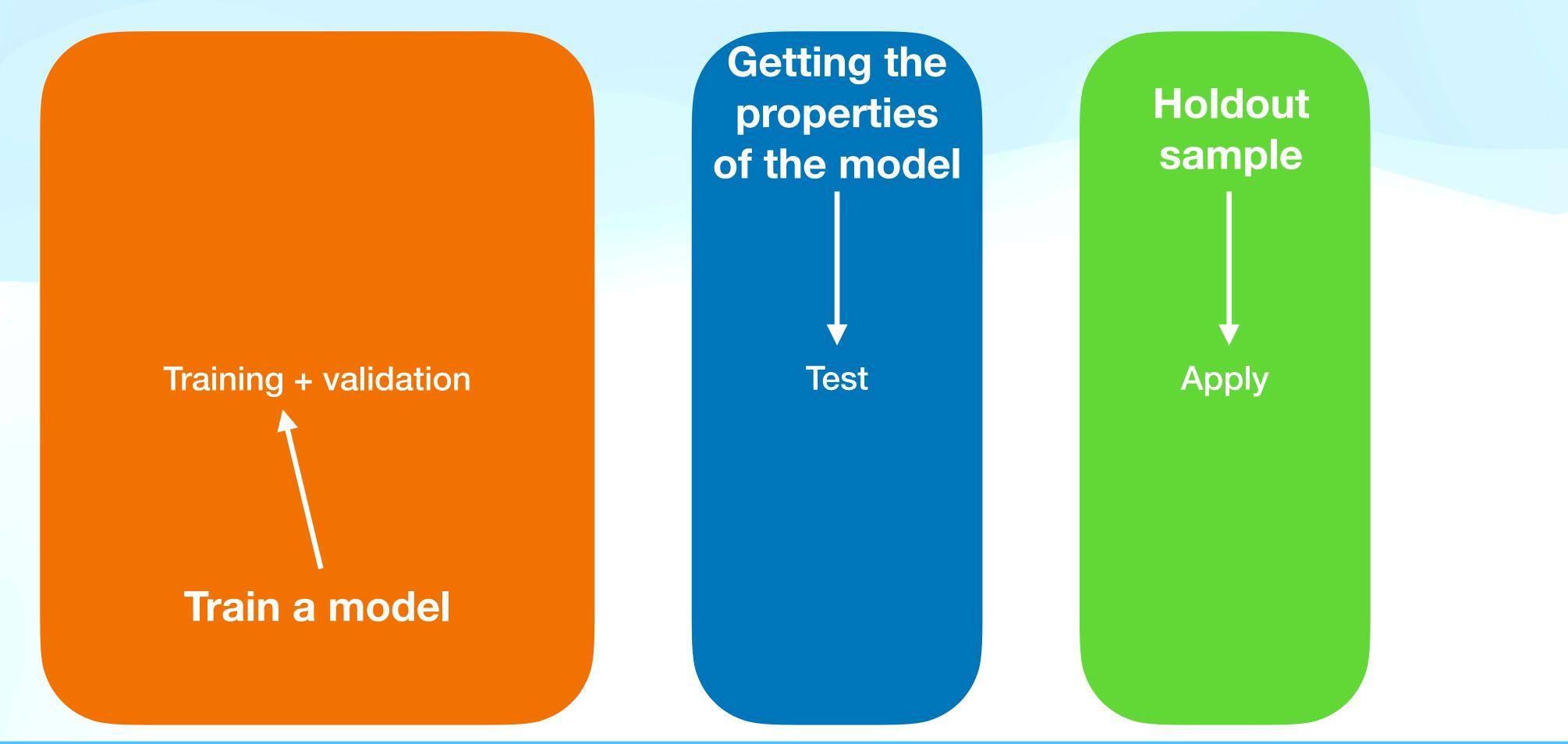
Oct. 25, 2023

- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks



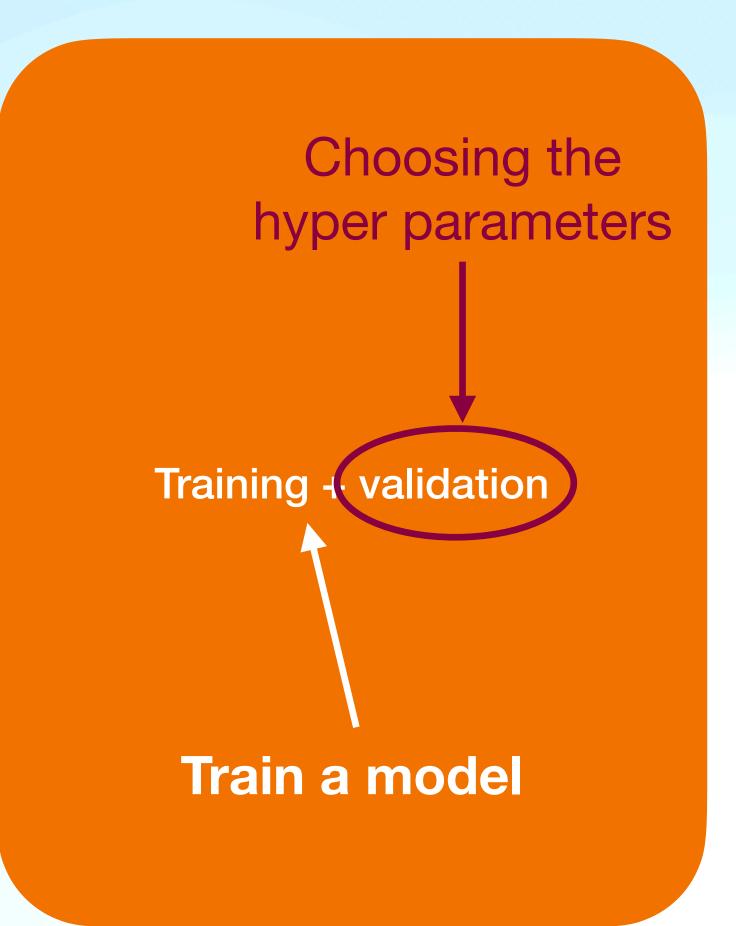
Oct. 25, 2023

- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks

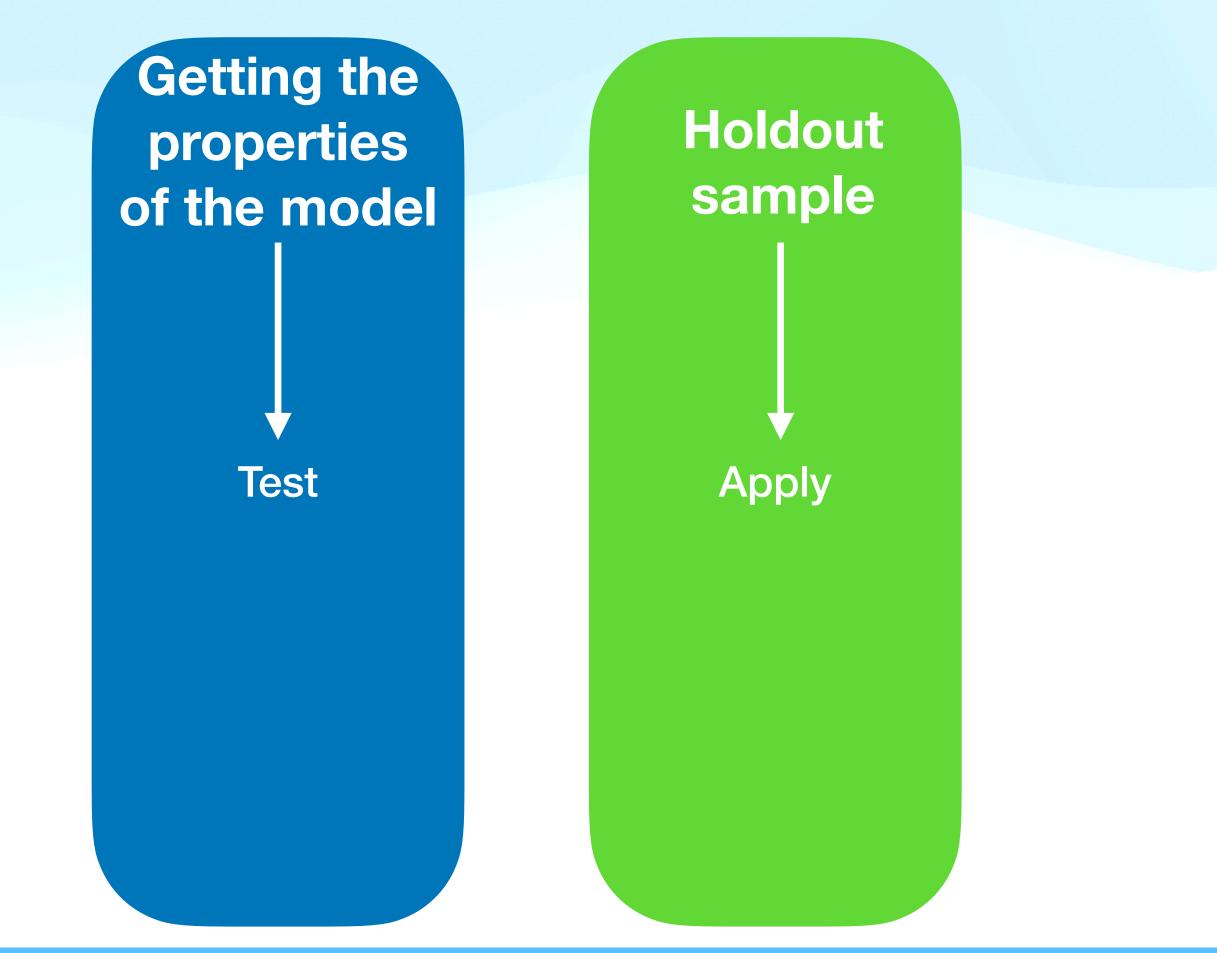


Oct. 25, 2023

- We want to train a model to help us differentiate between output classes
- We need to split the dataset to achieve the tasks



Oct. 25, 2023



Here's a common situation...

from sklearn.ensemble import AdaBoostClassifier clf = AdaBoostClassifier(

Oct. 25, 2023

Here's a common situation...

from sklearn.ensemble import AdaBoostClassifier clf = AdaBoostClassifier(

Oct. 25, 2023

Miguel Fernández Gómez

events

• Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools

• Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools
- Options are vast \rightarrow how do we know what's best?

Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools
- Options are vast \rightarrow how do we know what's best?
- First: Define what's "best"

Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools
- Options are vast \rightarrow how do we know what's best?
- First: Define what's "best"
 - Test score

Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools
- Options are vast \rightarrow how do we know what's best?
- First: Define what's "best"
 - Test score
 - AUC

Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

- events
- BDTs are the go-to tools
- Options are vast \rightarrow how do we know what's best?
- First: Define what's "best"
 - Test score
 - AUC
 - Other metrics (precision, recall, specificity, etc.)

Classifiers are used in HEP, e.g., to separate between signal-like and bkg-like

Miguel Fernández Gómez

Miguel Fernández Gómez

DecisionTreeClassifier, etc.)

Python's sklearn introduces several possible estimators (AdaBoost, XGBoost,

- Python's sklearn introduces several possible estimators (AdaBoost, XGBoost, DecisionTreeClassifier, etc.)
- Each possible estimator has its own set of possible hyper parameters

- Python's sklearn introduces several possible estimators (AdaBoost, XGBoost, DecisionTreeClassifier, etc.)
- Each possible estimator has its own set of possible hyper parameters
- So how do we choose?

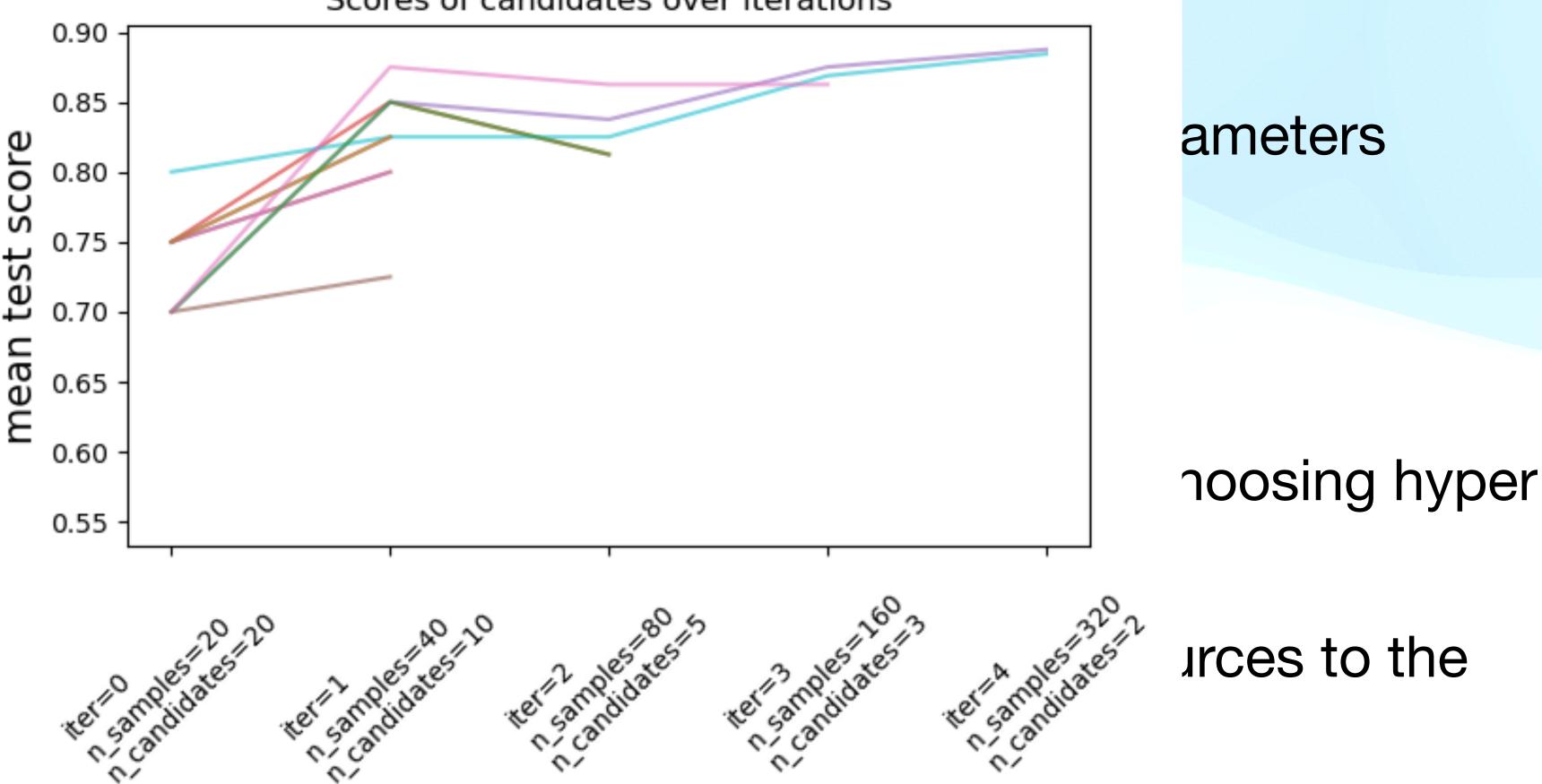
- Python's sklearn introduces several possible estimators (AdaBoost, XGBoost, DecisionTreeClassifier, etc.)
- Each possible estimator has its own set of possible hyper parameters
- So how do we choose?
- ANSWER: HalvingRandomSearchCV

- Python's sklearn introduces several possible estimators (AdaBoost, XGBoost, DecisionTreeClassifier, etc.)
- Each possible estimator has its own set of possible hyper parameters
- So how do we choose?
- ANSWER: HalvingRandomSearchCV
- parameters named successive halving

• This new feature implements a state-of-the-art technique in choosing hyper

- Python's sklearn introduces several possible estimators (AdaBoost, XGBoost, DecisionTreeClassifier, etc.)
- Each possible estimator has its own set of possible hyper parameters
- So how do we choose?
- ANSWER: HalvingRandomSearchCV
- This new feature implements a state-of-the-art technique in choosing hyper parameters named successive halving
- Successive halving allows us to allocate more and more resources to the models that are working best

- DecisionTreeC 0.90
- Each possible
- So how do we
- ANSWER: Halv
- This new featu parameters na
- Successive ha models that ar



Python's sklearn introduces several nossible estimators (AdaBoost, XGBoost,

Scores of candidates over iterations

iterations

• IMPORTANT: Still in development

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes
- We divide the process in p iterations

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes
- We divide the process in p iterations
- On each iteration, we k-fold

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes
- We divide the process in p iterations
- On each iteration, we k-fold
 - Default: Stratified folding with k = 5 and test size = 0.2

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes
- We divide the process in p iterations
- On each iteration, we k-fold
 - Default: Stratified folding with k = 5 and test size = 0.2
- The *i*-th iteration uses q events, where

- IMPORTANT: Still in development
- Consider: estimator E with hyperparameter grid of N possibilities
- We have *n* events to train, divided into *n_c* target classes
- We divide the process in p iterations
- On each iteration, we k-fold
 - Default: Stratified folding with k = 5 and test size = 0.2
- The *i*-th iteration uses q events, where

$$q = \min(2 \times n_c \times k \times f^i, n); f = 3$$
 (default)

Oct. 25, 2023

Miguel Fernández Gómez

• On the first iteration, by default we use n_p parameters

Miguel Fernández Gómez

- On the first iteration, by default we use n_p parameters
 - HalvingRandomSearch: $n_p = n/(q(i = 0))$

Miguel Fernández Gómez

- On the first iteration, by default we use n_p parameters
 - HalvingRandomSearch: $n_p = n/(q(i = 0))$
 - HalvingGridSearch: $n_p = N$

Miguel Fernández Gómez

- On the first iteration, by default we use n_p parameters
 - HalvingRandomSearch: $n_p = n/(q(i = 0))$
 - HalvingGridSearch: $n_p = N$
- Number of iterations: $p = 1 + floor(\log_f n_p)$

- On the first iteration, by default we use n_p parameters
 - HalvingRandomSearch: $n_p = n/(q(i = 0))$
 - HalvingGridSearch: $n_p = N$
- Number of iterations: $p = 1 + floor(\log_f n_p)$
- At the end of each iteration, we keep $ceil(n_p/f)$

- On the first iteration, by default we use n_p parameters
 - HalvingRandomSearch: $n_p = n/(q(i = 0))$
 - HalvingGridSearch: $n_p = N$
- Number of iterations: $p = 1 + floor(\log_f n_p)$
- At the end of each iteration, we keep $ceil(n_p/f)$
- Notice: In the end, N doesn't really matter for random halving

• Take sklearn's digits dataset

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$
- We want to use sklearn's AdaBoostClassifier, which takes in:

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$
- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator → We will avoid this for now (default: None)

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$
- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$
- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)

- Take sklearn's digits dataset
 - $n = 1797; n_c = 10$
- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

• Take sklearn's digits dataset

•
$$n = 1797; n_c = 10$$

- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

•
$$q(i=0) = 100; n_p = 17$$

• Take sklearn's digits dataset

•
$$n = 1797; n_c = 10$$

- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

•
$$q(i=0) = 100; n_p = 17$$

• Taking $f = 3 \rightarrow p = 3$ iterations

Oct. 25, 2023

• Take sklearn's digits dataset

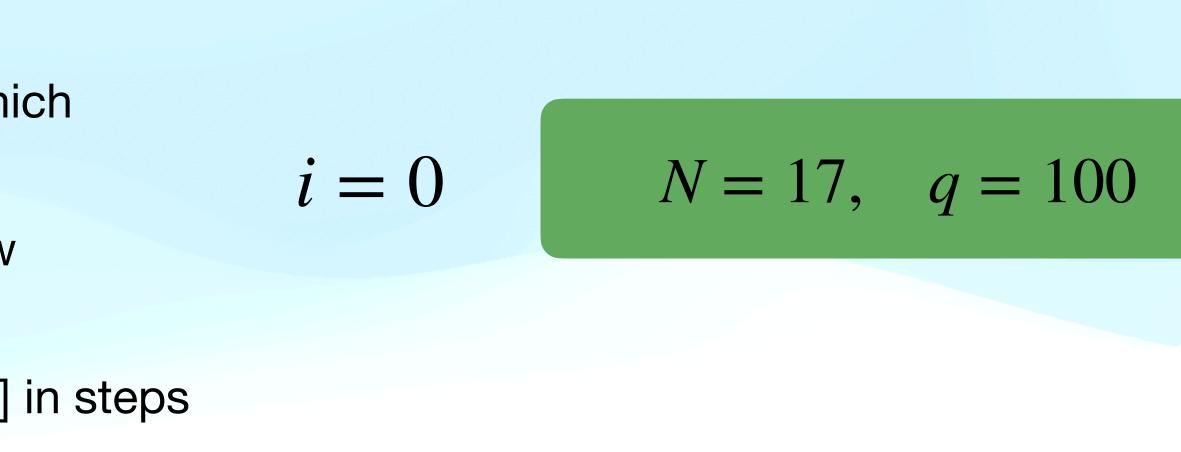
•
$$n = 1797; n_c = 10$$

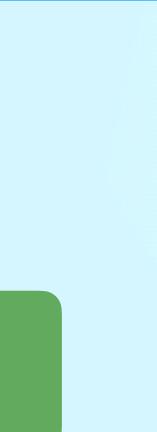
- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

•
$$q(i=0) = 100; n_p = 17$$

• Taking $f = 3 \rightarrow p = 3$ iterations

Oct. 25, 2023





• Take sklearn's digits dataset

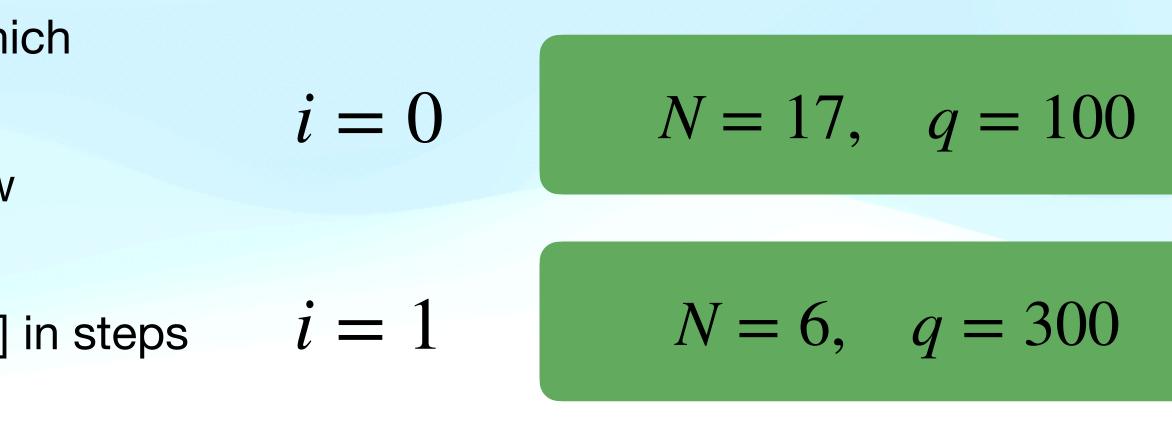
•
$$n = 1797; n_c = 10$$

- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

•
$$q(i=0) = 100; n_p = 17$$

• Taking $f = 3 \rightarrow p = 3$ iterations

Oct. 25, 2023



• Take sklearn's digits dataset

•
$$n = 1797; n_c = 10$$

- We want to use sklearn's AdaBoostClassifier, which takes in:
 - A base estimator \rightarrow We will avoid this for now (default: None)
 - Number of estimators \rightarrow Let us take [20, 250] in steps of 5 (default: 50)
 - Learning rate \rightarrow [0.01, 0.5] in steps of 0.01 (default: 0.1)
- Parameter grid: N = 2350 possibilities

•
$$q(i=0) = 100; n_p = 17$$

• Taking $f = 3 \rightarrow p = 3$ iterations

Oct. 25, 2023

i = 0 $N = 17, \quad q = 100$ i = 1 $N = 6, \quad q = 300$ $N = 2, \quad q = 900$ i = 2

sklearn.model_selection.HalvingRandomSearchCV

class sklearn.model_selection.HalvingRandomSearchCV(estimator, param_distributions, *, n_candidates='exhaust', factor=3, resource='n_samples', max_resources='auto', min_resources='smallest', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0) ¶

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingRandomSearchCV.html

Miguel Fernández Gómez

sklearn.model_selection.HalvingRandomSearchCV

class sklearn.model_selection.HalvingRandomSearchCV(estimator, param_distributions, *, n_candidates='exhaust', factor=3, resource='n_samples', max_resources='auto', min_resources='smallest', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0) ¶

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingRandomSearchCV.html

Miguel Fernández Gómez

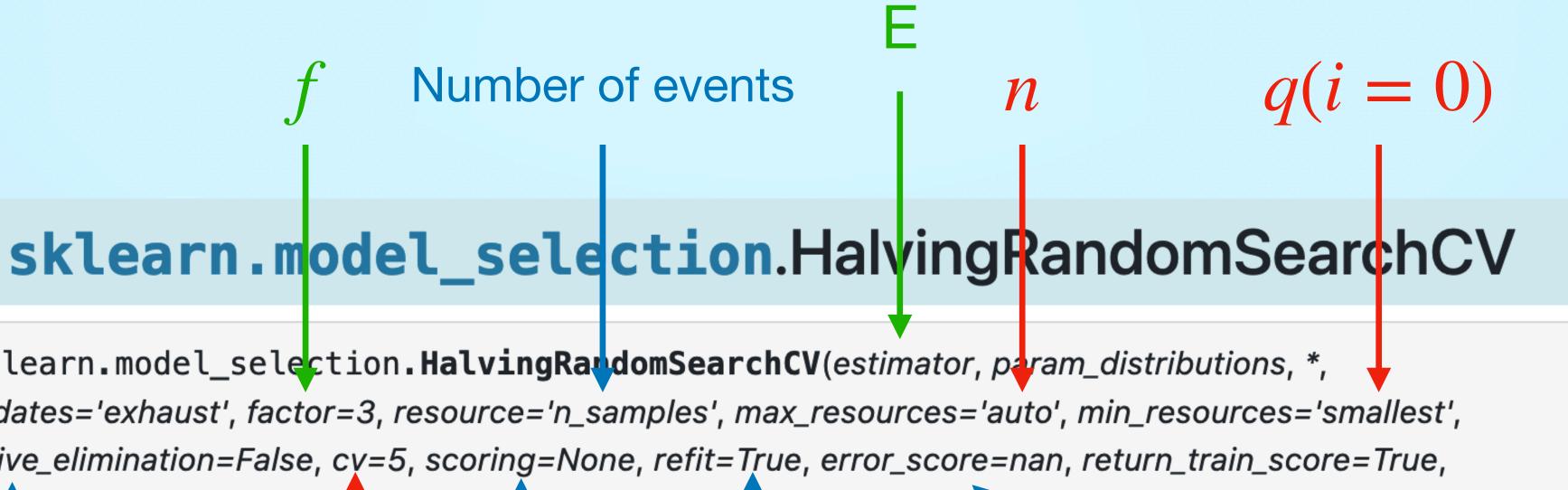
class sklearn.model_selection.HalvingRadomSearchCV(estimator, param_distributions, *, n_candidates='exhaust', factor=3, resource='n_samples', max_resources='auto', min_resources='smallest', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0) ¶

Useful only when scarce resources

 n_{p}

Scoring function (default: estimator's score)

Oct. 25, 2023



Refit E with optimal

hyper parameters

Score if there is an error

Miguel Fernández Gómez

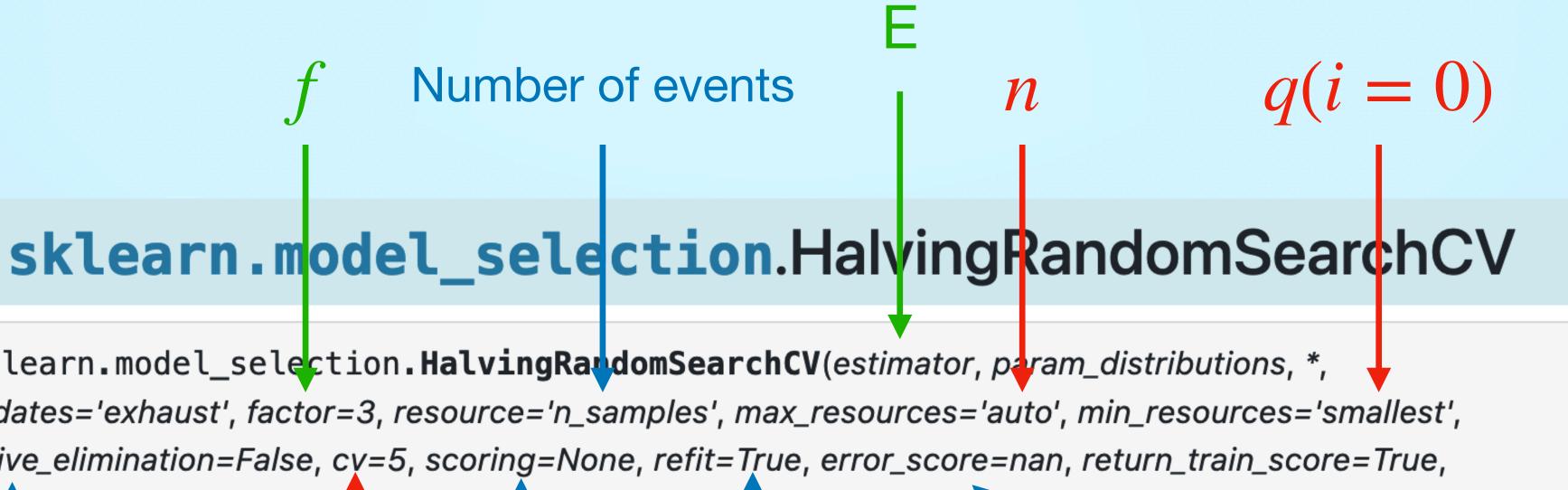
class sklearn.model_selection.HalvingRadomSearchCV(estimator, param_distributions, *, n_candidates='exhaust', factor=3, resource='n_samples', max_resources='auto', min_resources='smallest', aggressive_elimination=False, cv=5, scoring=None, refit=True, error_score=nan, return_train_score=True, random_state=None, n_jobs=None, verbose=0) ¶

Useful only when scarce resources

 n_{p}

Scoring function (default: estimator's score)

Oct. 25, 2023



Refit E with optimal

hyper parameters

Score if there is an error

Miguel Fernández Gómez

Practical examples

• Two simple examples on sklearn's digits dataset:

https://github.com/miguel-fernandez/comcha23/blob/main/halving.py

https://github.com/miguel-fernandez/comcha23/blob/main/halving2.py

Optuna

- Optuna is a more generic approach to the search of hyper parameters • It can also implement successive halving inside
- General concept:
 - Define a function to maximize or minimise (e.g., the accuracy) •
 - Define a hyper parameter space (can be even more generic than in sklearn)
 - Do random approaches, exploiting the areas where the function looks more promising

Optuna's language

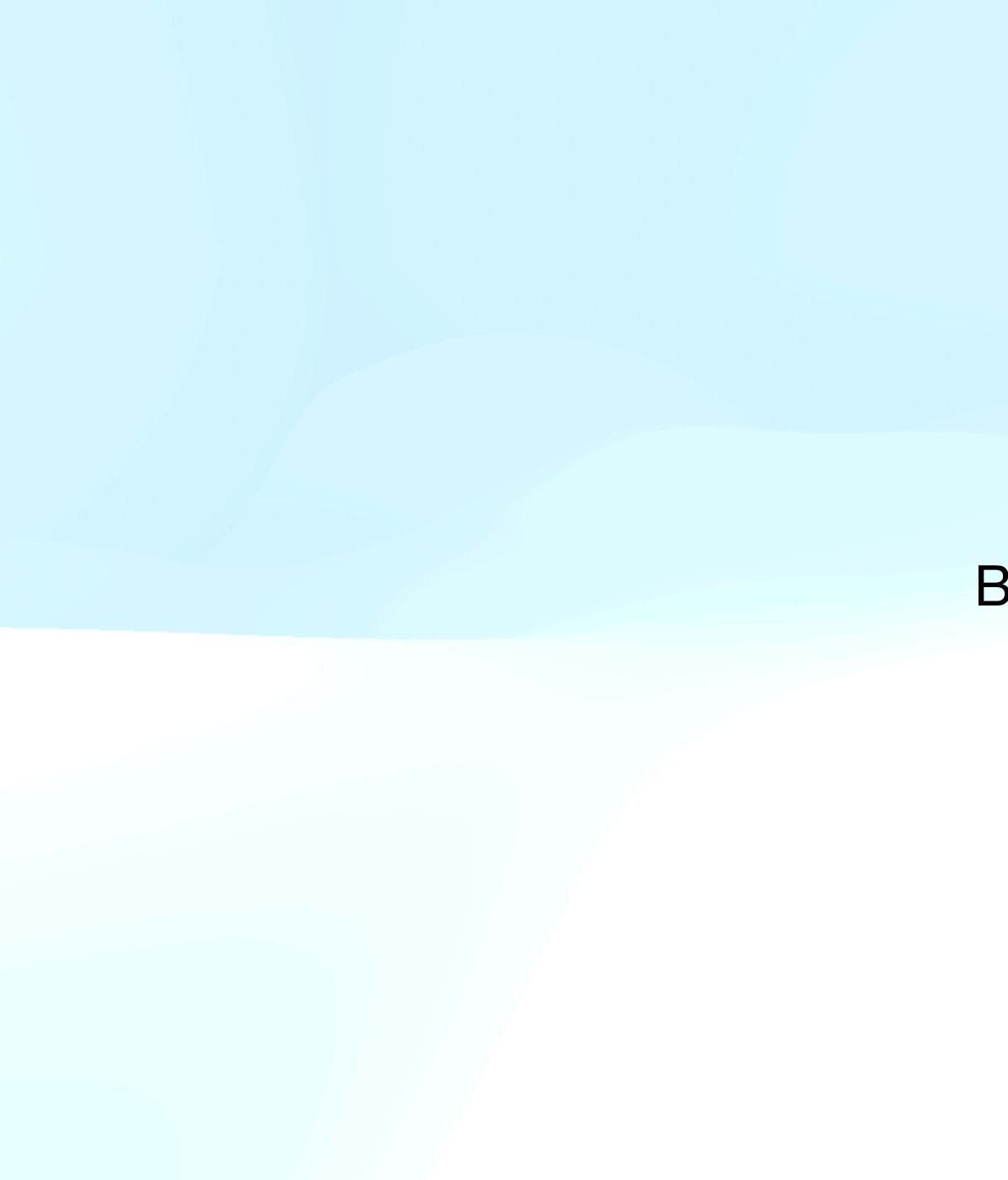
- Every hyperparameter search is called a study
- We define an *objective function* to minimize/maximize
- Each study is comprised of several tries
 - Each try is a random sampling on the hyperparameter space
 - A hyperparameter combination is chosen
 - The objective function outputs a value, which optuna uses to learn in subsequent trials

Optuna example

Basic example:

https://github.com/miguel-fernandez/comcha23/blob/main/optuna_test.py

- Challenge:
 - Implement halving2.py on optuna •



Backup

Some minor gripes with sklearn...

- No easy implementation of a holdout sample (very easy to train-test split)
- No easy implementation of spectator variables

fine-tuning led me to putting together a still-in-development package:

https://github.com/miguel-fernandez/hep-mva

This, combined with the desire to create easier access to Hyperparameter

