
  1

New computing paradigms
 in High Energy Physics

Third COMCHA School
University of Oviedo

Pablo Martínez Ruiz del Árbol



New computing paradigms in Hign Energy PhysicsP. Martinez/IFCA 2

A complex, rapidly growing ecosystem
➢ New computing technologies are quickly emerging and evolving all over the world
➢ Progress on both hardware and software makes this growing heteregenous and complex

➢ More hardware availability or better price leads to new software developments
➢ New algorithms and solutions encourage the fight for producing more advanced hardware

➢ The scale of the new developments is also incredibly fast (especially in software)
➢ In most cases your cutting-edge algorithm is obsolete in a matter of a few months     
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But never give up your brain  

Midjourney prompt: “Nerd guy giving a talk on Artificial 
Intelligence and Particle Physics close to the cathedral of Oviedo”

Don’t ever forget that success will come by using technology wisely not blindly!!!
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Use of new computing technologies in HEP
➢ Complex and rich environment of new techniques with two clear accelerators:

➢ New hardware architectures (GPU, FPGA, TPU, Quantum computers)
➢ Developments in AI, Deep Learning, Quantum computer, others 

➢ Some of these techniques are being used in almost all aspects of the LHC experiments.  
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Fast simulation
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GAN architectures for LHCb Fast Simulation
➢ This machinery aims at simulating the electron interactions in the ECAL of LHCb.

➢ The system simulates the energy deposition in a 30x30 matrix of ECAL cells.
➢ A Wasserstein Generative-Adversarial-Neural Network is used as learning scheme

➢ A regressor block is added in order to predict the momentum of the incoming particle. 

https://doi.org/10.1051/epjconf/201921402034
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GAN architectures for LHCb Fast Simulation
➢ The GAN is trained with detailed GEANT4-based simulations

➢ A total of 50000 events for the training + 10000 events for the test datasets  
➢ A reasonable agreement between GEANT4 and the GAN is found for the main features 
➢ The speed up in the generation is x10000 with respect to the detailed GEANT4 
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VAE architectures for ATLAS Fast Simulation
➢ ATLAS has also studied the simulation of the ECAL showering for photons.

➢ Two algorithms: GAN model and a Variational Auto-Encoders (VAE)
➢ The target (as for the LHCb case) is to generate the energy deposition in a block of cells.

➢ A total of 266 ECAL cells are considered from the different ECAL layers. 

10.1088/1742-6596/1525/1/012077
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VAE architectures for ATLAS Fast Simulation
➢ The system is trained using a detailed GEANT4-based dataset with 90000 events.

➢ Divided in 9 blocks of 10000 with 9 different incident energies.
➢ Only one region of the calorimeter is taken into account (fixed phi and eta) 

➢ The agreement between the VAE and the Geant4 is reasonable good
➢ But still far to be used for precision measurements
➢ The GAN approach (not explained here) seems to have a better performance.

Presampler Front layer Middle layer Back layer
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Diffusion models for ATLAS ECAL
➢ Diffusion models were used in the ATLAS dataset of the CALO challenge (2023)
➢ These models have a non-equilibrium thermodinamycs inspiration. Two phases: 

➢ Diffusion phase where noise is added to a train-real image
➢ Denoising phase where the noise is removed in steps to recover the image   

➢ Diffusion models are outperforming GANs and VAE
➢ Although they are more CPU consuming algorithms

Calo challenge Summary

https://indico.cern.ch/event/1242538/contributions/5435624/attachments/2690153/4668126/CaloChallenge%20report.pptx
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Trigger
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CNN for track seed filtering at the CMS HLT
➢ Tracks reconstructed with the pixel detector are used online for fast tracking and vertexing
➢ This is a challenge for Phase2 where the PU is expected to scale up to 200
➢ CMS is devising a full, parallelizable HLT RECO running on GPUs and using CAs

➢ Still there is a bottleneck on the number of “doublets” that will be further processed
➢ A CNN has been proposed to filter these seeds as a classification problem (Valid or not)
➢ Hits represented as 16x16 pixel pads images with colors proportional to deposited charge

➢ Images are combined in 20 channels/levels
➢ Accounting for the different inner/outer layers 

https://indico.cern.ch/event/819693/contributions/3438504/
attachments/1858975/3054502/Patatrack_DiFlorio_CMSCalcolo.pdf
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CNN for track seed filtering at the CMS HLT
➢ Test have been donde with a training on O(107) doublets from RECO simulation

➢ Obtained with only O(100) events
➢ True doublets are those where the hits can be matched to a same GEN particle 

➢ The system retains about 99% of efficiency while 2/3 of the fake doublets are rejected 
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ATLAS Phase-II RPC Muon Barrel Trigger 
➢ The ATLAS collaboration is working on a CNN running on a FPGA for the muon trigger.
➢ Events are interpreted and treated as images that are further fed into a CNN. 

➢ The RPC hits are represented as eta Vs. layer maps in the RPCs
➢ Image size is 384 bins in eta x 9 RPC stations

➢ The CNN performs a regression to 5D space [pT
leading, ηleading, pT

leading, ηleading, # muons]

ATLAS-L0-MUON-PUBLIC



New computing paradigms in Hign Energy PhysicsP. Martinez/IFCA 15

ATLAS Phase-II RPC Muon Barrel Trigger 
➢ The size and architecture of the CNN has to match the characteristics of the FPGA
➢ In order to reduce memory consumption a “Ternary CNN” is proposed

➢ Weights and activations can only take {-1, 0, 1} values instead of floating point.
➢ Memory is reduced by a factor 16 thanks to this procedure  

➢ The network outperforms by ~10% the classical algoritm in terms of efficiency.
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Reconstruction/
Identification
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Vertex reconstruction in Quantum Computing
➢ Vertex Reconstruction is the process of clustering tracks into a set of vertices
➢ This problem is combinatorial in nature: consider a problem with 2 true vertices.

➢ Which track combinations minimize their relative distances and maximize to the others?
➢ Actually this problem can be seen as a well-known problem in Graph Theory: Max-Cut 

➢ Given a graph with nodes and weighted edges → assign labels (red or blue) to the nodes in 

such a way that the sum of the weights crossing from one group to the other is maximal
➢ Encoding the solutions as vectors x = [0, 1, 0, 1, 0] then need to maximize:
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https://doi.org/10.1051/epjconf/202227409002
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Vertex reconstruction in Quantum Computing
➢ Consider tracks 3D points as a fully connected graph with weights equal to their distance
➢ Finding the assignment of tracks to vertices equals to finding two groups that maximize their 

mutual distance to each other → which is precisely a Max-Cut problem  
➢ Most Quantum Computers can implement an Ising Hamiltonian of the form  

➢The group assignment can be encoded in a set of quantum bits A = [q1, q2, q3, …, qN]
➢ The xj operator is defined to be 1/2(1 + σj) with value 0 or 1 when applied to qj

➢ The quantum state for which this Hamiltonian is minimum is the solution to the problem 

https://doi.org/10.1051/epjconf/202227409002
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The VQE algorithm 
➢ The Variational Quantum Eigensolver is a hybrid classic-quantum algorithm

➢ Aiming at finding the multi-qbit state that minimiez a given Hamiltonian 

https://doi.org/10.1051/epjconf/202227409002



New computing paradigms in Hign Energy PhysicsP. Martinez/IFCA 20

Vertex Reconstruction: results
➢ Algorithm implemented in the simulation framework of IBM Qiskit
➢ Reconstruction efficiency above 90% for vertices statistically separated below 1 mm 

https://doi.org/10.1051/epjconf/202227409002
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ATLAS quark-gluon discriminator with CNN
➢ ATLAS has also explored Convolutional Neural Networks to learn jet substructure
➢ Jet constituents are represented in eta – phi images with 16x16 binning

➢ Tracks and tower or topocluster information are represented in different images
➢ The color is proportional to the pt of the constituent (and then normalized)
➢ The best performance is found when combining the track + tower/topocluster input  

ATL-PHYS-PUB-2017-017
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ATLAS quark-gluon discriminator with CNN
➢ The network is trained with 2 fragmentation models (Pythia8 and Herwig++) + GEANT4

➢ The train dataset is composed of about 224000 images and the test about 56000
➢ Much better performance than the likelihood based quark-gluon discriminator
➢ Explainability of the tagger functioning can be also studied by looking at the filters 

➢ The average jet/quark images are convoluted with the filters and compared 
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DeepJet tagging in CMS
➢ CMS has devised a system to perform jet tagging combining CNN, RNN and Dense Layers.
➢ The network uses 4 levels of features:

➢ Charged particles: 16 features per particle x 25 charged particles
➢ Neutral particles: 6 features x 25 neutral particles
➢ Secondary vertex: 12 features x 4 secondary vertex
➢ Global variables: 6 features (number of vertices, jet pt, eta, etc.).   

➢ The CNN creates features per particle while the RNN (LSTM) summarizes sequentially

https://arxiv.org/pdf/2008.10519.pdf

Feature engineering Particle summary Final optimization
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DeepJet tagging in CMS
➢ The algorithm is trained with 130 million jets coming from simulated QCD and ttbar.
➢ The performance is compared to the CMS DeepCSV algorithm based on a fully dense ANN.

➢ DeepJet outperforms by ~12% the b-tagging efficiency for 0.001 misidentification rate.
➢ Also the performance is compared to the likelihood-based quark-gluon discriminator.

➢ DeepJet outperforms by ~10% the quark-gluon discriminator for 0.3 misidentificate rate.
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DQM
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Anomaly Detection in CMS Data Certification
➢ Data Certification: subsystem experts assign a quality flag to runs and lumisections

➢ Tedious and time consuming task (for example rarely DC really occurs per lumisection)
➢ CMS setting up a 2-step DC procedure combining supervised & unsupervised ML methods

Not covering this here

10.1088/1742-6596/1085/4/042015

https://doi.org/10.1088/1742-6596/1085/4/042015
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Anomaly Detection in CMS Data Certification
➢ The second step uses Variational Auto-Encoders to assign the quality flags

➢ No need of BAD data for training (good since fortunately most of the data is GOOD) 
➢ The source of a given anomaly can be traced back (interpretability of results) 

➢ The VAE learns to compress and uncompress the internal structure of the GOOD data
➢ This process does not work for anomalies resulting in an output very different to the input 

➢ The input to the autoencoder are the 5-quantile + mean + RMS of key histograms 



Detector Design Optimization
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Differential programming (quick definition)
➢ A new paradigm in which a computer program/function can be differentiated
➢ This is achieved by using automatic differentiation usually exploiting the chain rule 

def myTargetFunction(x):

x1, dx1dx = funcA(x)
y, dydx1 = funcB(x1)
return y, dydx1*dx1dx

def funcA(x):

x1 = x*x
dx1dx = 2*x
return x1, dx1dx

def funcB(x):

y = 1.0 / (1.0 + x)
dydx1 = -1.0/(1.0 + x)**2
return y, dydx1

➢ This technique allows to quickly and efficienctly estimate gradients of complex functions
➢ It is possible to minimize complicated loss functions using the gradient and SGD
➢ In a very simplistic way you can see this as a generalization of the backpropagation method

➢ But applied on generic functions and not on simple structures such as neurons 

https://doi.org/10.48550/arXiv.2309.14027

https://doi.org/10.48550/arXiv.2309.14027
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Differential programming for detector design
➢ Optimal design/configuration of a particle detector can be estimated using DP
➢ The objective function should contain metrics about all important parameters in the design:

➢ Performance (efficiencies, resolutions, etc), cost, constraints in the system  
➢ These ideas are being exploited to produce optimal design for a muography experiment 

https://doi.org/10.48550/arXiv.2309.14027

https://doi.org/10.48550/arXiv.2309.14027
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Conclusions

➢ New computing paradigms are emerging, growing and changing the world as we know it 
➢ In particular at the LHC and other HEP experiments they are starting to have a strong impact 
➢ A large plethora of different algorithms are being used at different places of the experiments
➢ A few examples have been shown on Generation, Trigger, Reco/Identification and DQM
➢ A set of different algorithms discussed but be aware that many new algorithms are coming

➢ Graph Neural Networks (tracking), Autoregressive networks, ...  
➢ Also some steps are being given in the direction of improving explainability of the systems
➢ Large gain and in some cases impressive results

➢ But remember that usually in the talks only the successful examples are shown :-)
➢ The large gain usually comes with a large effort in understanding the details
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Thanks for your attention

Enjoy the school and enjoy Oviedo!
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